A Rhodamine-Based Hg2+ Sensor with High
Selectivity and Sensitivity in Aqueous Solution:
A NS2-Containing Receptor
SCHEME 1. Representative Mechanism of the
Chemosensor Based on the RhB
Junhai Huang, Yufang Xu, and Xuhong Qian*
State Key Laboratory of Bioreactor Engineering, Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy,
East China UniVersity of Science and Technology,
Shanghai 200237, China
spirocyclic moiety mediated by guests as shown in Scheme 1.2-9
When guests are bound to the sensors, the spirocyclic form of
RhBs, which is colorless and nonfluorescent, is converted to
the opened-cyclic form which is pink and strongly fluorescent.2-9
However, this conversion is strongly dependent on the organic
solvent content or pH value in detecting solution system.2-9
For the known reversible sensors based on the rhodamine
moiety, most of them work well in a pure organic solvent media
(such as MeCN2,3c,5d,e,6c,e or MeCN/methanol6a) or an aqueous
solution containing at least 50% organic cosolvent (such as
DMF,5f ethanol,5b,6b,7a,b methanol,4c or MeCN3b,d). Also, some
of them work well in strong acidic solution at pH 3-45g,h,10 or
strong basic solution at pH 12.8b Moreover, this conversion will
reverse when some competitive solvents, such as water, are
added into the sensing system. These limitations, including
organic cosolvent dependence and pH dependence, to some
extent, lower the sensitivity and restrict the application of
rhodamine-based sensors in biological systems and environ-
mental determinations.11 In fact, only a few of them, particularly
in irreversible rhodamine-based ion sensors,4a,b,d work well in
ReceiVed October 13, 2008
A rhodamine-based sensor 1 was designed and synthesized
by incorporation the rhodamine fluorophore and ionophore
NS2 with high affinity to Hg2+. Sensor 1 exhibits a high
selectivity and an excellent sensitivity and is a dual-
responsive colorimetric and fluorescent Hg2+-specific sensor
in aqueous buffer solution. In addition, the 1:1 binding mode
was proposed based on the 1H NMR and ES(+)MS studies.
(4) (a) For Hg2+ (irreversible sensor): Yang, Y. K.; Yook, K. J.; Tae, J. J. Am.
Chem. Soc. 2005, 127, 16760–16761. (b) Shi, W.; Ma, H. Chem. Comm. 2008,
16, 1856–1858. (c) Wu, J.; Hwang, I.; Kim, K.; Kim, J. Org. Lett. 2007, 9,
907–910. (d) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47,
8025–8029.
(5) (a) For Hg2+ (reversible sensor): Wu, D.; Huang, W.; Lin, Z.; Duan,
Ch.; He, Ch.; Wu, Sh.; Wang, D. Inorg. Chem. 2008, 47, 7190–7201. (b) Yang,
H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett. 2007, 9,
4729–4723. (c) Suresh, M.; Shrivastav, A.; Mishra, S.; Suresh, E.; Das, A. Org.
Lett. 2008, 10, 3013–3016. (d) Lee, M.; Wu, J.; Lee, J.; Jung, J.; Kim, J. Org.
Lett. 2007, 9, 2501–2504. (e) Soh, J.; Swamy, K.; Kim, S.; Kim, S.; Lee, S.;
Yoon, J. Tetrahedron Lett. 2007, 48, 5966–5969. (f) Wu, D.; Huang, W.; Duan,
C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538–1540. (g) Zheng, H.; Qian,
Z.; Xu, L.; Yuan, F.; Lan, L.; Xu, J. Org. Lett. 2006, 8, 859. (h) Zhan, X.; Qian,
Z.; Zheng, H.; Su, B.; Lan, Z.; Xu, J. Chem. Commun. 2008, 16, 1859–1861.
(6) (a) For Fe3+: Bae, S.; Tae, J. Tetrahedron Lett. 2007, 48, 5389–5392.
(b) Xiang, Y.; Tong, A. J. Org. Lett. 2006, 8, 1549–1552. (c) Zhang, X.; Shiraishi,
Y.; Hirai, T. Tetrahedron Lett. 2008, 10, 4178–4181. (d) Zhang, M.; Gao, Y.;
Li, M.; Yu, M.; Li, F.; Li, L.; Zhu, M.; Zhang, J.; Yi, T.; Huang, C. Tetrahedron
Lett. 2007, 48, 3709–3712. (e) Zhang, X.; Shiraishi, Y.; Hirai, T. Tetrahedron
Lett. 2007, 48, 5455–5459. (f) Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.;
Liu, W. Org. Lett. 2007, 9, 4567–4570.
Rhodamine B and its derivatives (RhBs) are well-known for
their desirable properties, including good photostability, high
extinction coefficient (>75000 cm-1 M-1), and high fluores-
cence quantum yield, particularly in its nucleotide and nucleic
acid conjugates.1 Recently, rhodamine-based sensors for cations
and other analytes have received ever-increasing interest in areas
such as for sensors for Pb2+, Cu2+, Hg2+, Fe3+, Cr3+, NO, and
OCl-.2-8 The mechanism is based on the switch off/on of the
(7) (a) For Cr3+: Zhou, Z.; Yu, M.; Yang, H.; Huang, K.; Li, F.; Yi, T.;
Huang, Ch. Chem. Comm. 2008, 16, 3387–3389. (b) Huang, K.; Yang, H.; Zhou,
Z.; Yu, M.; Li, F.; Gao, X.; Yi, T.; Huang, Ch. Org. Lett. 2008, 10, 2557–2560.
(8) (a) For NO and OCl: Zheng, H.; Shang, G.; Yang, S.; Gao, X.; Xu, J.
Org. Lett. 2008, 10, 2357–2360. (b) Chen, X.; Wang, X.; Wang, S.; Shi, W.;
Wang, K.; Ma, H. Chem.sEur. J. 2008, 14, 4719–4724.
(9) Kim, H.; Lee, M.; Kim, H.; Kim, J.; Yoon, J. Chem. Soc. ReV. 2008, 37,
1465–1472.
(10) Proton could induce the opened-cycle of spirolactam below pH5.0;
therefore, the acid media was not suitable to determine targeted-analytes.
(11) In general, the sensor for biological application works in near neutral
conditions.
(1) Haugland, R. P. The Handbook: a guide to fluorescent probes and labeling
technologies, the tenth edition, molecular probes; Invitrogen Corp.: Karlsbad,
CA, 2005.
(2) (a) For Pb2+: Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo,
M. S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107–10111.
(3) (a) For Cu2+: Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc.
1997, 119, 7386–7367. (b) Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006,
8, 2863–2866. (c) Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039–
5042. (d) Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008,
10, 213–216.
10.1021/jo802297x CCC: $40.75
Published on Web 02/11/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2167–2170 2167