ORGANIC
LETTERS
2009
Vol. 11, No. 7
1631-1633
Total Synthesis of (-)-Lycorine and
(-)-2-epi-Lycorine by Asymmetric
Conjugate Addition Cascade
Ken-ichi Yamada, Mitsuaki Yamashita, Takaaki Sumiyoshi, Katsumi Nishimura,
and Kiyoshi Tomioka*
Graduate School of Pharmaceutical Sciences, Kyoto UniVersity,
Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Received February 18, 2009
ABSTRACT
Total syntheses of (-)-lycorine and (-)-2-epi-lycorine were accomplished using chiral ligand-controlled asymmetric cascade conjugate addition
methodology, which enables the formation of two C-C bonds and three stereogenic centers in one pot to give synthetically useful chiral
cyclohexane derivatives.
The Amaryllidaceae alkaloids are ideal candidates for
clinically useful pharmaceuticals, such as galantamine for
Alzheimer’s disease.1 (-)-Lycorine (1), a potent emetic first
isolated in 1877, is the most abundant Amaryllidaceae
alkaloid.2 Recent studies revealed that lycorine has other
interesting biologic activities, including antiviral activity and
apoptosis induction.3,4 Since its structure was determined by
Uyeo in 1935,5 it has attracted the attention of synthetic
chemists, and many synthetic studies, including total syn-
theses, have been reported.6 Only one asymmetric synthesis,
however, has been reported to date.7 Herein, we report the
asymmetric synthesis of lycorine (1) and the first total
synthesis of 2-epi-lycorine (2) using a chiral ligand-
controlled8 asymmetric cascade conjugate addition reaction.
In our strategy, chiral ligand 3 mediates an asymmetric
conjugate addition reaction9 of aryllithium 4 with a sym-
(6) (a) Tsuda, Y.; Sano, T.; Taga, J.; Isobe, K.; Toda, J.; Irie, H.; Tanaka,
H.; Takagi, S.; Yamaki, M.; Murata, M. J. Chem. Soc., Chem. Commun.
1975, 933. (b) Møller, O.; Steinberg, E.-M.; Torssell, K. Acta Chem. Scand.,
Sect. B 1978, 32, 98. (c) Umezawa, B.; Hoshino, O.; Sawaki, S.; Sashida,
H.; Mori, K. Heterocycles 1979, 12, 1475. (d) Martin, S. F.; Tu, C. -y. J.
Org. Chem. 1981, 46, 3764. (e) Boeckman, R. K., Jr.; Goldstein, S. W.;
Walters, M. A. J. Am. Chem. Soc. 1988, 110, 8250. (f) Hoshino, O.; Ishizaki,
M.; Kamei, K.; Taguchi, M.; Nagao, T.; Iwaoka, K.; Sawaki, S.; Umezawa,
B.; Iitaka, Y. J. Chem. Soc., Perkin Trans. 1 1995, 571.
(1) (a) Zarotsky, V.; Sramek, J. J.; Cutler, N. R. Am. J. Health-Syst.
Pharm. 2003, 60, 446. (b) WHO Drug Info. 1998, 12, 205.
(2) Cook, J. W.; Loudon, J. D. In The Alkaloids; Manske, R. H. F.,
Holmes, H. L., Eds; Academic Press: New York, 1952; Vol. 2, p 331.
(3) (a) Liu, J.; Li, Y.; Tang, L.-J.; Zhang, G.-P.; Hu, W.-X. Biomed.
Pharmacother. 2007, 61, 229. (b) Liu, J.; Hua, W.-X.; He, L.-F.; Ye, M.;
Li, Y. FEBS Lett. 2004, 578, 245
(4) For a review of the biological effects of lycorine and related
Amaryllidaceae alkaloids, see: Ghosal, S.; Saini, K. S.; Razdan, S.
.
(7) Schultz, A. G.; Holoboski, M. A.; Smyth, M. S. J. Am. Chem. Soc.
1996, 118, 6210.
Phytochemistry 1985, 24, 2141
.
(8) Tomioka, K. Synthesis 1990, 541.
(5) Kondo, H.; Uyeo, S. Chem. Ber. 1935, 68, 1756.
(9) Asano, Y.; Iida, A.; Tomioka, K. Tetrahedron Lett. 1997, 38, 8973.
10.1021/ol9003564 CCC: $40.75
Published on Web 02/25/2009
2009 American Chemical Society