126
M. Arai et al.
LETTER
OAc
Table 5 Synthesis of 3-Substituted 4-Acetoxyindolines via Air
Oxidation
CO2Me
12c (72%)
a
11c
OAc
R2
O
R2
80 °C, 4 h
Ac2O (3 equiv)
CSA (1 equiv)
N
Ph
Ac
O2, 110 °C, 5 h
R1
N
R1
N
OAc
Ph
H
Ac
a
10
11
11e
11f
12e (79%)
12f (66%)
80 °C, 4 h
N
Entry Hydroindoles 10 Indoline 11 (yield, %)
Me
Ac
OAc
Bu
OAc
1
2
3
10a
10b
10c
11a (59)
11b (63)
11c (28)
a
N
80 °C, 1.5 h
Ac
N
Me
OAc
Ac
Ph
Scheme 4 DDQ oxidation of indolines 11. Reagents and conditi-
ons: (a) DDQ (2 equiv), dioxane.
N
Ac
OAc
available starting diones12 as well as the convergent nature
of the two-component coupling reactions. Explorations of
these processes to the synthesis of biologically interesting
indoles or natural indole alkaloids are one of our major
concerns.
CO2Me
N
Ph
Ac
O
Supporting Information for this article is available online at
OAc
4
5
6
10d
10e
10f
11d (33)
11e (54)
11f (42)
N
Ph
References and Notes
Ac
(1) For recent syntheses for 4-hydroxyindoles, see:
(a) Gathergood, N.; Scammells, P. J. Org. Lett. 2003, 5, 921.
(b) Shirota, O.; Hakamata, W.; Goda, Y. J. Nat. Prod. 2003,
66, 885; and references cited therein. (c) For the structure–
activity relationship study of II, see: Repke, D. B.; Grotjahn,
D. B.; Shulgin, A. T. J. Med. Chem. 1985, 28, 892.
(2) Liou, J.-P.; Wu, Z.-Y.; Kuo, C.-C.; Chang, C.-Y.; Lu, P.-Y.;
Chen, C.-M.; Hsieh, H.-P.; Chang, J.-Y. J. Med. Chem.
2008, 51, 4351.
OAc
Ph
N
Ac
OAc
(3) (a) Ishikawa, T.; Kadoya, R.; Arai, M.; Takahashi, H.; Kaisi,
Y.; Mizuta, T.; Yoshikai, K.; Saito, S. J. Org. Chem. 2001,
66, 8000. (b) Ishikawa, T.; Miyahara, T.; Asakura, M.;
Higuchi, S.; Miyauchi, Y.; Saito, S. Org. Lett. 2005, 7, 1211.
(4) For KF-catalyzed synthesis of 2-hydroxyiminodihydro-
furans, see: Miyashita, M.; Kumazawa, T.; Yoshikoshi, A.
J. Org. Chem. 1980, 45, 2945.
(5) Yanami, T.; Ballatore, A.; Miyashita, M.; Kato, M.;
Yoshikoshi, A. J. Chem. Soc., Perkin Trans. 1 1978, 1144.
(6) For the synthesis of 4-oxo-4,5,6,7-tetrahydroindoles, see:
(a) Leonarda, P.; Chiara, G.; Giacomo, M.; Maurizio, T.
Tetrahedron Lett. 2008, 49, 459. (b) Kathriarachchi,
K. K. A. D. S.; Siriwardana, A. I.; Nakamura, I.; Yamamoto,
Y. Tetrahedron Lett. 2007, 48, 2267. (c) Nayyar, N. K.;
Hutchison, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62,
982. (d) Matsumoto, M.; Watanabe, N. Heterocycles 1984,
22, 2313. (e) Bobbitt, J. M.; Kulkarni, C. L.; Dutta, C. P.;
Kofod, H.; Chiong, K. N. J. Org. Chem. 1978, 43, 3541.
(7) 4-Oxo-4,5,6,7-tetrahydroindoles with no substituent at C(3)
can be converted into 4-hydroxyindoles by Pd-catalyzed
dehydrogenation or DDQ oxidation though in low yields,
see: Remers, W. A.; Roth, R. H.; Gibs, G. J.; Weis, M. J.
J. Org. Chem. 1971, 36, 1232.
N
Ac
(8) For aromatization of six-membered carbocycles by air
oxidation, see: (a) Kawashita, Y.; Nakamichi, N.;
Kawabata, H.; Hayashi, M. Org. Lett. 2003, 5, 3713.
(b) Ishikawa, T.; Hino, K.; Yoneda, T.; Murota, M.;
Yamaguchi, K.; Watanabe, T. J. Org. Chem. 1999, 64, 5691.
(9) For the synthesis of 4-hydroxyindoles, see: (a) Somei, M.;
Yamada, F. Heterocycles 2000, 53, 1573. (b) Matsumoto,
M.; Ishoda, Y.; Watanabe, N. Heterocycles 1986, 24, 165.
(c) Hegedus, L. S.; Mulhern, T. A.; Mori, A. J. Org. Chem.
1985, 50, 4282. (d) Remers, W. A.; Weiss, M. J. J. Am.
Chem. Soc. 1965, 87, 5262.
(10) We are considering that transformation of I-A to I-C may
involve an intermediary adduct I-B although nucleophilic
attack of electron-rich dienamine function in I-A toward
oxygen molecule, if any, might directly give I-C from I-A
and could not be ruled out.
(11) Schreiber, S. L. Science 2000, 287, 1964.
(12) For general synthesis of cyclohexane-1,3-diones, see ref. 3a.
Synlett 2009, No. 1, 122–126 © Thieme Stuttgart · New York