LETTER
Synthesis of Optically Active Gallocatechin-3-gallate Derivatives
3237
D.-H.; Chung, H.-J.; Kang, S.; Day, D. F.; Kim, D. J. Argric.
Food Chem. 2006, 54, 1230. (c) Dell’Agli, M.; Bellosta, S.;
(11) Experimental Procedure for Shi Epoxidation
To a solution of 15 (77.0 mg, 0.255 mmol) in MeCN–DMM
(dimethyl methylether) (1:2, 2.7 mL) were successively
added 8a (100 mg, 0.156 mmol), Bu4N+HSO4– (2.4 mg, 7.0
mmol), phosphorus buffer (pH 9.18, 4 mL), Oxone (376 mg,
0.611 mmol), and K2CO3 (125 mg, 0.90 mmol) at 0 °C. After
being stirred for 25 min at 0 °C, H2O was added to the
reaction mixture, extracted with EtOAc, dried over anhyd
MgSO4, and evaporated. The residue was purified by
chromatography on silica gel column (n-hexane–EtOAc,
10:1) to afford 16 (71.5 mg, 70%) as a yellow oil. The ee of
16 was determined by HPLC analysis on a chiral stationary
phase under the conditions described below.
Rizzi, L.; Galli, G. V.; Canavesi, M.; Rota, F.; Parente, R.;
Bosisio, E.; Romeo, S. Cell. Mol. Life Sci. 2005, 62, 2896.
(4) (a) Zaveri, N. T. Org. Lett. 2001, 3, 843. (b) Li, L.; Chan,
T. H. Org. Lett. 2001, 3, 739. (c) Higuchi, T.; Ohmori, K.;
Suzuki, K. Chem. Lett. 2006, 35, 1006. (d) Kitade, M.;
Ohno, Y.; Tanaka, H.; Takahashi, T. Synlett 2006, 2827.
(e) Ding, T.-J.; Wang, X.-L.; Cao, X.-P. Chin. J. Chem.
2006, 24, 1618.
(5) Furuta, T.; Hirooka, Y.; Abe, A.; Sugata, Y.; Ueda, M.;
Murakami, K.; Suzuki, T.; Tanaka, K.; Kan, T. Bioorg. Med.
Chem. Lett. 2007, 17, 3095.
(6) Wu, X.-Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124,
8792.
Spectral Data for 16
[a]D20 +14.1 (c 1.0, CHCl3). IR (neat): 1116, 1253, 1591,
2927, 3030 cm–1. 1H NMR (500 MHz, CDCl3): d = 0.24 (s,
6 H), 1.01 (s, 9 H), 2.93 (dd, J = 14.3, 5.2 Hz, 1 H), 3.04 (dd,
J = 14.3, 5.2 Hz, 1 H), 3.15 (td, J = 5.2, 2.0 Hz, 1 H), 3.58
(d, J = 2.0 Hz, 1 H), 5.02 (s, 2 H), 5.07 (s, 4 H), 6.57 (s, 2 H),
6.82 (dd, J = 7.9, 1.2 Hz, 1 H), 6.92 (td, J = 7.9, 1.2 Hz, 1 H),
(7) (a) Nicolau, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang,
C.-K. J. Am. Chem. Soc. 1989, 111, 5330. (b) Jain, A. C.;
Arya, P.; Nayyar, N. K. Indian J. Chem., Sect. B: Org.
Chem. Incl. Med. Chem. 1983, 22, 1116. (c) For a recent
report, see: Matsuo, G.; Kawamura, K.; Hori, N.; Matsukura,
H.; Nakata, T. J. Am. Chem. Soc. 2004, 126, 14374. (d) For
the disubstituted epoxide, see: Oka, T.; Fujiwara, K.; Murai,
A. Tetrahedron 1996, 52, 12091.
(8) (a) Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley,
A. Synlett 1998, 26. (b) Review of modified Julia reaction,
see: Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002,
2563. (c) Z-selective Julia olefination, see: Lebrun, M.-E.;
Marquand, P. L.; Berthelette, C. J. Org. Chem. 2006, 71,
2009.
7.13 (td, J = 7.9, 1.2 Hz, 1 H), 7.31–7.42 (m, 15 H). 13
C
NMR (68 MHz, CDCl3): d = –4.0, 18.3, 25.8, 33.0, 58.6,
62.2, 71.2, 75.2, 105.0, 118.4, 121.2, 127.4, 127.7, 127.8,
128.1, 128.5, 128.6, 130.7, 133.3, 137.0, 137.8, 153.0,
153.7. MS–FAB: m/z = 659 [M + H]+. HRMS: m/z calcd for
C42H47O5Si [M + H]+: 659.3193; found: 659.3167. HPLC
analysis: Daicel Chiralpak AD-H 0.46 cm ø x 25 cm, eluent:
7% IPA–hexane, flow rate: 0.5 mL/min, tR = 98.7 min
(96.2%), 109.7 min (3.7%).
(9) Although HWE reaction of 10 and phosphonate 24 provided
8a in good stereoselectivity, it resulted in a low yield
(Scheme 7).
(12) Experimental Procedure for 6-endo Cyclization
To a solution of 16 (127 mg, 0.193 mmol) in THF (4.5 mL)
were successively added AcOH (33 mL, 0.578 mmol) and
TBAF (1 M in THF, 231 mL, 0.231 mmol) at 0 °C under an
Ar atmosphere. After being stirred for 10 min at 0 °C, H2O
was added to the mixture and extracted with EtOAc, dried
over anhyd MgSO4, and evaporated to the crude product
(major constituent: 7; 185 mg) as a yellow oil. The crude 7
(185 mg) and CSA (45.4 mg, 0.193 mmol) were dissolved in
CH2Cl2 (4.5 mL) under an Ar atmosphere. After being
stirred for 30 min at 0 °C, H2O was added to the mixture and
extracted with CH2Cl2, dried over anhyd MgSO4, and
evaporated. The residue was purified by chromatography on
silica gel column (n-hexane–EtOAc, 3:1) to afford 6 (63.7
mg, 61%, 2 steps), containing a small amount of the
corresponding cis-isomer, as a yellow oil. The product (20.3
mg) was recrystallized from EtOAc–hexane to afford
optically pure trans-isomer 6 (13.7 mg, 67%). The ee of 6
was determined by HPLC analysis on a chiral stationary
phase under the conditions described below. Spectral date
for 6: [a]D +1.7 (c 0.84, CHCl3). IR (neat): 1132, 1246, 1597,
3032 cm–1. 1H NMR (500 MHz, CDCl3): d = 1.63 (d, J = 3.8
Hz, 1 H), 2.89 (dd, J = 15.8, 9.1 Hz, 1 H), 3.07 (dd, J = 15.8,
5.5 Hz, 1 H), 3.99 (dq, J = 15.8, 3.8 Hz, 1 H), 4.65 (d, J = 7.9
Hz, 1 H), 5.11–5.16 (m, 6 H), 6.73 (s, 2 H), 6.91–6.95 (m,
1 H), 7.11 (d, J = 7.3 Hz, 1 H), 7.16 (t, J = 7.3 Hz, 1 H),
7.25–7.44 (m, 16 H). 13C NMR (68 MHz, CDCl3): d = 32.9,
68.1, 71.2, 75.2, 81.9, 106.7, 116.4, 120.2, 121.1, 127.5,
127.7, 127.8, 127.9, 128.2, 128.47, 128.53, 130.0, 133.3,
136.8, 137.7, 138.7, 153.0, 153.9. MS.FAB: m/z = 544 [M]+.
HRMS: m/z calcd for C36H32O5 [M]+: 544.2250; found:
544.2264. HPLC analysis: Daicel Chiralcel OD 0.46 cm ø
x 25 cm, eluent: 10% IPA–hexane, flow rate: 0.5 mL/min,
tR: 77.8 min (>99%).
OBn
OTBS
OBn
OBn
LHMDS
8a
+
THF
30%
O
P
10
24
EtO
O
EtO
Scheme 7
(10) In acidic conditions, epoxide 16 was readily converted into
quinone methide intermediate 25, and sequential attack by
MCBA to benzyl position of 25 afforded 26 (Scheme 8).
OBn
OBn
OBn
OBn
OBn
OBn
MCPBA
CH2Cl2
OR
OR
O
8a
16
R = TBS
Ar
OBn
OBn
ArCOOH
OR
OBn
OBn
OBn
O
O
OR
OBn
OH
OH
26
Ar = 3-ClC6H4
25
(13) Spectral Data for 4
[a]D20 –73.5 (c 1.1, 50% acetone–H2O). IR (neat): 1230,
1336, 1693, 3287 cm–1. 1H NMR (270 MHz, acetone-d6):
d = 2.79 (dd, J = 16.2, 5.6 Hz, 1 H), 2.93 (dd, J = 16.2, 4.6
Scheme 8
Synlett 2008, No. 20, 3234–3238 © Thieme Stuttgart · New York