Journal of the American Chemical Society
Page 4 of 6
(b) Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K. F. Ox-
etanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemis-
try. Chem. Rev. 2016, 116, 12150–12233.
(7) Gutekunst, W. R.; Baran, P. S. C–H functionalization logic in total syn-
thesis. Chem. Soc. Rev. 2011, 40, 1976–1991.
(8) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent applications
of C–H functionalization in complex natural product synthesis. Chem. Soc.
Rev. 2018, 47, 8925–8967.
(9) (a) Ng, S. M.; Beaudry, C. M.; Trauner, D. Intramolecular Diels-Alder
reactions of 5-vinyl-1,3-cyclohexadienes. Org. Lett. 2003, 5, 1701–1704.
(b) Kelli, S. K.; Beaudry, C. M.; Trauner, D.; Houk, K.N. Dienophile Twist-
ing and Substituent Effects Influence Reaction Rates of Intramolecular
Diels−Alder Cycloadditions:ꢀ A DFT Study. J. Am. Chem Soc. 2005, 127,
3688–3689.
In summary, we were able to mimic a bio-inspired C–H oxidation
of mitrephorone B (2) to mitrephorone A (1) using either iron-
catalysis or electrochemical oxidation. Despite a careful screen
of oxidants as well as literature precedence for structurally re-
lated substrates,25,26 oxidation of the C2-position to give mi-
trephorone C (3) was never observed.31 Our inability to realize
this transformation might reveal current limitations of modern C–
H oxidation methods or indicate an alternative biosynthetic path-
way. For the latter scenario, oxidation of C2 would precede for-
mation of the delicate diosphenol motif thus ruling out mitrepho-
rone B (2) as the parent compound.32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Gallier, F.; Martel, A.; Dujardin, G. Enantioselective Access to Rob-
inson Annulation Products and Michael Adducts as Precursors. Angew.
Chem. Int. Ed. 2017, 56, 12424–12458.
(11) Deschamp, J.; Hermant, T.; Riant, O. An easy route toward enantio-
enriched polycyclic derivatives via an asymmetric domino conjugate reduc-
tion–aldol cyclization catalyzed by a chiral Cu(I) complex. Tetrahedron
2012, 68, 3457–3467.
(12) Zhou, B.; Miao, Z.; Deng, G.; Ding, J.; Yang, Y.; Feng, H.; Li, Y.
Synthesis and biological evaluation of novel triptolide analogues for anti-
cancer activity. Bioorg. Med. Chem. Lett. 2010, 20, 6217–6221.
(13) (a) Yu, J.; Yu, B. Synthesis of the ABC skeleton of the aglycon of
Echinoside A. Chin. Chem. Lett. 2015, 26, 1331–1335. (b) Utilizing alkene
10 under identical reaction conditions did not provide the Robinson product,
but lead to a complex product mixture.
(14) Xu, C.; Han, A.; Virgil, S. C.; Reisman, S. E. Chemical Synthesis of
(+)-Ryanodine and (+)-20-Deoxyspiganthine. ACS Cent. Sci. 2017, 3, 278–
282.
(15) Chieffi, A.; Kamikawa, K.; Ahman, J.; Fox, J. M.; Buchwald, S. L.
Catalytic asymmetric vinylation of ketone enolates. Org. Lett. 2001, 3,
1897–1900.
(16) Corey, E. J.; Cheng, X.-M. Logic of chemical synthesis; Wiley: New
York, 1995.
(17) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M.
Total synthesis of (±)-garsubellin. J. Am. Chem. Soc. 2005, 127, 14200–
14201.
(18) Ramesh, R.; Bell, V.; Twidle, A. M.; Gonnade, R.; Reddy, D. S. En-
antiospecific Synthesis of Both Enantiomers of the Longtailed Mealybug
Pheromone and Their Evaluation in a New Zealand Vineyard. J. Org.
Chem. 2015, 80, 7785–7789.
(19) Wu, Z.-Y.; Zhang, Y.-B.; Zhu, K.-K.; Luo, C.; Zhang, J.-X.; Cheng,
C.-R.; Feng, R.-H.; Yang, W.-Z.; Zeng, F.; Wang, Y.; Xu, P.; Guo, J.; Liu,
X.; Guan, S.; Guo, D. Anti-inflammatory diterpenoids from the root bark of
Acanthopanax gracilistylus. J. Nat. Prod. 2014, 77, 2342–2351.
(20) Shimizu, E.; Koshino, H.; Noro, A.; Maruyama, M.; Shimoda, N.;
Uesugi, S.; Ohnishi, M.; Kimura, K. Isolation of a spirolactone norditerpe-
noid as a yeast Ca2+ signaltransduction inhibitor from Kuji amber and eval-
uation of its effects on PPM1A activity. Filoterapia 2019, 134, 290–296.
(21) (a) Sigrist, R.; Rey, M.; Dreiding, A. S. Kurze Totalsynthesen von (±)-
Sativen und (±)-cis-Sativendiol. Helv. Chim. Acta 1988, 71, 788–807.
(b) Galatsis, P.; Parks, D. J. Stereoselective synthesis of substituted ox-
etanes. Tet. Lett. 1994, 35, 6611–6614.
(22) Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi,
R. A. Simple, chemoselective hydrogenation with thermodynamic stere-
ocontrol. J. Am. Chem. Soc. 2014, 136, 1300–1303.
(23) Efforts to deoxygenate 16 via a pinacol-like rearrangement remained
unsuccessful. For recent examples, see: (a) Defaut, B.; Parsons, T. B.; Spen-
cer, N.; Male, L.; Kariuki, B. M.; Grainger, R. S. Synthesis of the trans-
hydrindane core of dictyoxetane. Org. Biomol. Chem. 2012, 10, 4926–4932.
(b) Liu, S.-A.; Trauner, D. Asymmetric Synthesis of the Antiviral Diterpene
Wickerol A. J. Am. Chem. Soc. 2017, 139, 9491–9494.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental details and spectroscopic data (PDF)
X-ray crystallographic data for 2, 7, 11, and 12 (ZIP)
AUTHOR INFORMATION
Corresponding Author
*thomas.magauer@uibk.ac.at
ORCID
Thomas Magauer: 0000-0003-1290-9556
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by the Austrian Science Fund FWF
(P31023-NBL to T.M.) and the Center for Molecular Biosciences
CMBI. Furthermore, we thank Dr. Kevin Mellem (Maze Therapeu-
tics) and Dr. Cedric Hugelshofer (Merck) for assistance during the
preparation of this paper, Juri Skotnitzki (LMU Munich) for chiral
GC analysis and Dr. Matthias Schmid (University of Innsbruck) for
helpful discussions.
REFERENCES
(1) (a) Hanson, J. R. Diterpenoids. Nat. Prod. Rep. 2006, 23, 875–885. (b)
Hanson, J. R. Diterpenoids. Nat. Prod. Rep. 2007, 24, 1332–1341. (c) Roy,
A.; Roberts, F. G.; Wilderman, P. R.; Zhou, K.; Peters, R. J.; Coates, R. M.
16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: potent mechanism-
based inhibitors of recombinant ent-kaurene synthase from Arabidopsis
thaliana. J. Am. Chem. Soc. 2007, 129, 12453–12460.
(2) Li, C.; Lee, D.; Graf, T. N.; Phifer, S. S.; Nakanishi, Y., Burgess, J. P.;
Riswan, S.; Setyowati, F. M.; Saribi, A. M.; Soejarto, D. D.; Farnsworth,
N. R.; Falkinham III, J. S.; Kroll, D. J.; Kinghorn, A. D.; Wani, M. C.;
Oberlies, N. H. A Hexacyclic ent-Trachylobane Diterpenoid Possessing an
Oxetane Ring from Mitrephora glabra. Org. Lett. 2005, 7, 5709–5712.
(3) Hong, Y. J.; Tantillo, D. J. Formation of beyerene, kaurene, trachyl-
obane, and atiserene diterpenes by rearrangements that avoid secondary car-
bocations. J. Am. Chem. Soc. 2010, 132, 5375–5386.
(4) (a) Hugelshofer, C. L.; Magauer, T. A Bioinspired Cyclization Se-
quence Enables the Asymmetric Total Synthesis of Dictyoxetane. J. Am.
Chem. Soc. 2016, 138, 6420–6423. (b) Hugelshofer, C. L.; Magauer, T. A
Divergent Approach to the Marine Diterpenoids (+)-Dictyoxetane and (+)-
Dolabellane V. Chem. Eur. J. 2016, 22, 15125 –15136.
(5) Richter, M. J. R.; Schneider, M.; Brandstätter, M.; Krautwald, S.; Car-
reira, E. M. Total Synthesis of (–)-Mitrephorone A. J. Am. Chem. Soc. 2018,
140, 16704–16710.
(24) Riley, H. L. Oxidation Activity of Selenium Dioxide. Nature 1947,
159, 571–572.
(25) Chen, M. S.; White, M. C. Combined effects on selectivity in Fe-cat-
alyzed methylene oxidation. Science 2010, 327, 566–571.
(26) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J. T.;
Baran, P. S. Scalable, Electrochemical Oxidation of Unactivated C–H
Bonds. J. Am. Chem. Soc. 2017, 139, 7448–7451.
(27) Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H. F.;
Fagnoni, M.; Djuric, S. W.; Noël, T. Selective C(sp3)-H Aerobic Oxidation
Enabled by Decatungstate Photocatalysis in Flow. Angew. Chem. Int. Ed.
2018, 57, 4078–4082.
(6) (a) Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Car-
reira, E. M. Oxetanes as versatile elements in drug discovery and synthesis.
Angew. Chem. Int. Ed. 2010, 49, 9052–9067.
(28) Electrochemical oxidation of diosphenol 20 provided 1 in 28% yield.
ACS Paragon Plus Environment