862
D. González-Rodríguez, T. Torres / Tetrahedron Letters 50 (2009) 860–862
6b), manifested by a clear splitting of some of the aromatic proton
signals. This is specially evident in the protons that are in ortho-po-
of specific interactions between the MCPBA reagent and one of the
sides of the SubPc ring in the transition state.
sition to the sulfoxide group (
a
, b, and
v
in Fig. 2). Such a splitting
This is one of the few cases of diastereoselective reactions in-
duced by a curved aromatic substrate,16 and certainly the first
one in SubPc chemistry. The preliminary results obtained from
these experiments are encouraging for the utilization of asymmet-
ric oxidation procedures13 on peripherally or axially thioether-
substituted SubPcs. The separation of SubPc diastereoisomers
bearing an enantiomerically pure sulfoxide group would lead, after
elimination of the stereogenic center, to the desired enantiomeric
macrocycles. These optically active chromophores may show very
valuable properties to be applied in supramolecular chemistry and
molecular materials science.
in SubPc diastereoisomers has also been observed in SubPc-fullero-
pyrrolidine dyads.4a Although we could separate these two diaste-
reoisomers by HPLC in an analytical scale, any attempt to isolate
them by column chromatography in higher amounts was fruitless.
On the other hand, when we carried out the oxidation reaction
of compound 5, bearing the sulfoxide group at the SubPc
tion, we observed a totally different behavior. In contrast to com-
pound 4, the reaction of led to 95:5 mixture of
a posi-
5
a
diastereoisomers, as determined by 1H NMR and HPLC analysis.
Moreover, in this case, the two diastereoisomers could be sepa-
rated by standard column chromatography, yielding compounds
7a and 7b in 76% and 4% yields, respectively. Figure 3 shows the
aromatic region of the 1H NMR spectra of the mixture of sulfox-
ide-SubPcs formed in the oxidation reaction of 5, as well as of
the isolated diastereomeric products 7a and 7b.
The proximity of the thioether group to the core of the chiral
macrocycle in 5, when compared to SubPc 4, is likely to be respon-
sible for the diastereoselectivity observed in this oxidation process.
Molecular models, however, did not help in establishing a prefer-
ential attack mode of the oxidizing agent that could account for
such selectivity. It may be that at such low temperatures, the phe-
nylsulfide moiety in 5 adopts a well-defined conformation that is
then subject to attack from only one of the sides of the macrocycle.
Another possible explanation for this effect would be the existence
Acknowledgments
Funding from MEC (CTQ2008-00418/BQU, CONSOLIDER-INGE-
NIO 2010 CDS2007-00010 NANOCIENCIA MOLECULAR, and ESF-MEC
MAT2006-28180-E, SOHYDS), COST Action D35, and Comunidad
de Madrid (S-0505/PPQ/000225) is acknowledged.
Supplementary data
Supplementary data (synthetic procedures and characterization
data of compounds C3-1, C1-1, C3-2, C1-2, 3, 4, 5, 6, 7a, and 7b) asso-
ciated with this paper can be found, in the online version, at
References and notes
φ
β
α
1. (a) Claessens, C. G.; González-Rodríguez, D.; Torres, T. Chem. Rev. 2002, 102,
835–853; (b) Torres, T. Angew. Chem., Int. Ed. 2006, 45, 2834–2837.
2. (a)The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guillard, R., Eds.;
Academic Press: San Diego, 2003; Vols. 15–20, (b) de la Torre, G.; Claessens, C.
G.; Torres, T. Chem. Commun. 2007, 2000–2015.
3. (a) Sastre, A.; Torres, T.; Díaz-García, M. A.; Agulló-López, F.; Dhenaut, C.;
Brasselet, S.; Ledoux, I.; Zyss, J. J. Am. Chem. Soc. 1996, 118, 2746–2747; (b) del
Rey, B.; Keller, U.; Torres, T.; Rojo, G.; Agulló-López, F.; Nonell, S.; Marti, C.;
Brasselet, S.; Ledoux, I.; Zyss, J. J. Am. Chem. Soc. 1998, 120, 12808–12817; (c)
Claessens, C. G.; González-Rodríguez, D.; Torres, T.; Martín, G.; Agulló-López, F.;
Ledoux, I.; Zyss, J.; Ferro, V. R.; García de la Vega, J. M. J. Phys. Chem. B 2005, 109,
3800–3806.
χ
γ
X
N
N
N
B
Cl
δ
N
N
ε
N
CHCl3
ε
χ + β
5
φ
δ
α
γ
4. SubPcs have been employed as electron donors: (a) González-Rodríguez, D.;
Torres, T.; Guldi, D. M.; Rivera, J.; Herranz, M. A.; Echegoyen, L. J. Am. Chem. Soc.
2004, 126, 6301–6313; as energy donors: (b) González-Rodríguez, D.;
Claessens, C. G.; Torres, T.; Liu, S.; Echegoyen, L.; Vila, N.; Nonell, S. Chem.
Eur. J. 2005, 11, 3881–3893; or as electron acceptors: (c) González-Rodríguez,
D.; Torres, T.; Olmstead, M. M.; Rivera, J.; Herranz, M. A.; Echegoyen, L.;
Atienza-Castellanos, C.; Guldi, D. M. J. Am. Chem. Soc. 2006, 128, 10680–10681.
5. Díaz, D. D.; Bolink, H. J.; Cappelli, L.; Claessens, C. G.; Coronado, E.; Torres, T.
Tetrahedron Lett. 2007, 48, 4657–4660.
ε
(7a) + ε(7b)
CHCl3
ε
(7a) + ε(7b) + γ(7a)
α(7a)
7a + 7b
χ(7a)
β(7a)
φ(7a)
χ(7b)
β(7b)
γ(7b)
φ(7b)
α(7b)
6. (a) Xu, S.; Chen, K.; Tian, K. J. Mater. Chem. 2005, 15, 2676–2680; (b) Palomares,
E.; Martínez-Díaz, M. V.; Torres, T.; Coronado, E. Adv. Funct. Mater. 2006, 16,
1166–1170.
CHCl3
7a
7. (a) Kang, S. H.; Kim, K.; Kang, Y.-S.; Zin, W.-C.; Olbrechts, G.; Wostyn, K.; Clays,
K.; Persoons, A. Chem. Commun. 1999, 17, 1661–1662; (b) Claessens, C. G.;
Torres, T. J. Am. Chem. Soc. 2002, 124, 14522–14533; (c) Rodríguez-Morgade, M.
S.; Claessens, C. G.; Medina, A.; González-Rodríguez, D.; Gutiérrez-Puebla, E.;
Monge, A.; Alkorta, I.; Elguero, J.; Torres, T. Chem. Eur. J. 2008, 14, 1342–1350.
8. (a) Meller, A.; Ossko, A. Monatsh. Chem. 1972, 103, 150–155; (b) Claessens, C.
G.; González-Rodríguez, D.; del Rey, B.; Torres, T.; Mark, G.; Schuchmann, H.-P.;
von Sonntag, C.; MacDonald, J. G.; Nohr, R. S. Eur. J. Org. Chem. 2003, 2547–
2551.
ε
χ
δ
φ
β
γ
α
7b
χ
ε
CHCl3
9. (a) Hanack, M.; Geyer, M. J. Chem. Soc., Chem. Commun. 1994, 2253–2254; (b)
Claessens, C. G.; Torres, T. Eur. J. Org. Chem. 2000, 1603–1607.
δ
φ
β
γ
α
10. Palmans, A. R. A.; Meijer, E. W. Angew. Chem., Int. Ed. 2007, 46, 8948–8968.
11. Claessens, C. G.; Torres, T. Tetrahedron Lett. 2000, 41, 6361–6365.
12. Kobayashi, N.; Nonomura, T. Tetrahedron Lett. 2002, 43, 4253–4255.
13. (a) Carreño, M. C. Chem. Rev. 1995, 95, 1717–1760; (b) Procter, D. J. J. Chem. Soc.,
Perkin Trans. 1 2000, 835–871.
14. The C3 and C1 regioisomers of 1 and 2 (C3-1, C1-1, C3-2 and C1-2), could be
isolated and were characterized independently (see the Supplementary data).
15. González-Rodríguez, D.; Claessens, C. G.; Torres, T. J. Porphyrins
Phthalocyanines., in press.
9.00
8.50
8.00
7.50
7.00
(ppm)
Figure 3. Aromatic region of the 1H NMR spectra in CDCl3 of SubPcs 5, the 95:5
mixture of diastereoisomers of SubPc 7 (7a + 7b) as isolated from the reaction
mixture, and compounds 7a and 7b after separation by column chromatography.
16. More is known, however, on stereoselecitve processes in helicene chemistry:
Urbano, A. Angew. Chem., Int. Ed. 2003, 42, 3986–3989.