A. G. Hernꢀan, J. D. Kilburn / Tetrahedron Letters 45 (2004) 831–834
Table 2. Yields from cyclisation of iodide 11 (Scheme 3)
833
Entry
Ditin reagent
Ditin reagent
(equiv)
Time (h)
Yieldsa (%)
11
70
12
13
14
1
7
0.1
0.1
0.1
0.1
0.1
0.1
0.05
0.05
0.05
0.02
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.1
1
4
30
34
0
0
0
2
7
58
14
60
14
0
5
6
3
7
16
1
80
40
0
4
8
0
0
5
8
4
83 (78)
92 (90)
16
0
0
6
8
16
1
0
8
7
8
75
67
55
65
100
90
61
90
69
9
0
2
8
8
4
22
33
0
2
9
8
16
16
1
0
2
10
11
12
13
14
15
16
17
18
8
30
0
0
5
8b
8b
8b
8c
8c
8c
1d
1d
0
0
4
5
25
0
3
16
1
0
10
2
8
26
0
4
0
3
16
––
––
79
––
0
7
35
5
61
50
36
a Yields determined by GC except for those in parenthesis which are isolated yields.
b Recovered directly from previous reaction.
c Recycled resin (treated with LiAlH4, then Pd(0)) from previous reaction.
d Published results, see Ref. 7.
W. J. Org. Chem. 1995, 60, 2607–2609; Vedejs, E.;
Duncan, S. M.; Haight, A. R. J. Org. Chem. 1993, 58,
3046–3048; fluorous: Curran, D. P.; Hadida, S.; Kim, S.
Y.; Luo, Z. Y. J. Am. Chem. Soc. 1999, 121, 6607–6615.
The polymer-supported distannane can also be recycled
for further use (Table 2, entries 11–16). Resin 8 was
recovered from an initial iodine-transfer cyclisation of
11 (Table 2, entry 6). The resin was dried under vacuum
6. See, for example, (a) Gerigk, U.; Gerlach, M.; Neumann,
W. P.; Vieler, R.; Weintritt, V. Synthesis 1990, 448–452;
(b) Kuhn, H.; Neumann, W. P. Synlett 1994, 123–124; (c)
Dumartin, G.; Kharboutli, J.; Delmond, B.; Pereyre, M.;
Biesemans, M.; Gielen, M.; Willem, R. Organometallics
1996, 15, 19–23; (d) Chemin, A.; Deleuze, H.; Maillard, B.
Eur. Polym. J. 1998, 34, 1395–1404; (e) Nicolaou, K. C.;
Winssinger, N.; Pastor, J.; Murphy, F. Angew. Chem., Int.
Ed. 1998, 37, 2534–2537; (f) Enholm, E. J.; Schulte, J. P.,
II. Org. Lett. 1999, 1, 1275–1277; (g) Enholm, E. J.;
Gallagher, M. E.; Moran, K. M.; Lombardi, J. S.;
Schulte, J. P., II. Org. Lett. 1999, 1, 689–691; (h)
Boussaguet, P.; Delmond, B.; Dumartin, G.; Pereyre, M.
Tetrahedron Lett. 2000, 41, 3377–3380; (i) Zhu, X.;
Blough, B. E.; Carroll, F. I. Tetrahedron Lett. 2000, 41,
9219–9222.
and then reused for the same reaction giving a 25% yield
(GC) of 12 after 16 h (Table 2, entry 13). However, after
reduction with LiAlH4 and subsequent reaction with
Pd(PPh3)4, the same sample of resin then gave a 79%
yield (GC) of 12 after 16 h (Table 2, entry 16).
Acknowledgements
We thank Dr. David Apperley, NMR Service Manager
at the Industrial Research Laboratories, University of
Durham, UK for carrying out the MAS 119Sn NMR
experiments.
7. (a) Junggebauer, J.; Neumann, W. P. Tetrahedron 1997,
53, 1301–1310; (b) Harendza, M.; Junggebauer, J.;
Leßmann, K.; Neumann, W. P.; Tews, H. Synlett 1993,
286–289; (c) Harendza, M.; Leßmann, K.; Neumann, W.
P. Synlett 1993, 283–286.
References and notes
8. Curran, D. P.; Yang, F.; Cheong, J. J. Am. Chem. Soc.
2002, 124, 14993–15000.
9. The absence of an IR absorption for a Sn–H bond
(1805 cmꢁ1) for resin 1 was used to indicate that the level
of tin hydride impurities is low. See Ref. 7a.
1. Radicals in Organic Synthesis; (a) Renaud, P., Sibi, M. P.,
Eds.; Wiley-VCH: Weinheim, Germany, 2001; (b) Par-
sons, A. F. An Introduction to Free Radical Chemistry;
Blackwell Science: Oxford, 2000.
2. Gilbert, B. C.; Parsons, A. F. J. Chem. Soc., Perkin Trans.
2 2002, 367–387.
ꢀ
10. Hernan, A. G.; Guillot, V.; Kuvshinov, A.; Kilburn, J. D.
Tetrahedron Lett. 2003, 44, 8601–8603.
3. Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140–
3157.
11. Weinshenker, N. M.; Crosby, G. A.; Wong, J. Y. J. Org.
Chem. 1975, 40, 1966–1971.
4. For example, tris(trimethylsilyl)silane: Chatgilialoglu, C.
Acc. Chem. Res. 1992, 25, 188–194; hypophosphite salts:
Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. J. Org.
Chem. 1993, 58, 6838–6842; Graham, S. R.; Murphy, J.
A.; Coates, D. Tetrahedron Lett. 1999, 40, 2415–2416.
5. Water soluble: Clive, D. L. J.; Waing, J. J. Org. Chem.
2002, 67, 1192–1198; acid soluble: Clive, D. L. J.; Yang,
12. Polymer 5 (obtained as a mixture of the desired tin hydride
polymer 5 and cross-linked distannane polymer 7): IR
(ATR): mmax ¼ 1803 cmꢁ1 (Sn–H); 119Sn NMR (gel phase in
C6D6; 112 MHz): d ¼ ꢁ80:3 (small, br), )86.2 ppm; Micro-
analysis: Sn: 12.5% (1.06 mmol/g); Cl < 0.1%. Polymer 6:
IR (ATR): mmax ¼ 1822 cmꢁ1 (Sn–H); 13C NMR (gel phase
in C6D6, 75.5 MHz): d 73.1 (br), 45.6 (br), 26.8, 5.3,