Organic Letters
Letter
361, 1363−1369. (h) Albright, H.; Riehl, P. S.; McAtee, C. C.; Reid, J.
P.; Ludwig, J. R.; Karp, L. A.; Zimmerman, P. M.; Sigman, M. S.;
Schindler, C. S. Catalytic Carbonyl-Olefin Metathesis of Aliphatic
Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles.
J. Am. Chem. Soc. 2019, 141, 1690−1700.
REFERENCES
■
(1) See, for instance: (a) Hwang, S. W.; Adiyaman, M.; Khanapure,
S.; Schio, L.; Rokach, J. Total Synthesis of 8-epi-PGF2.alpha. A Novel
Strategy for the Synthesis of Isoprostanes. J. Am. Chem. Soc. 1994,
116, 10829−10830. (b) Porta, A.; Vidari, G.; Zanoni, G. A General
Enantioselective Approach to Jasmonoid Fragrances: Synthesis of
(+)-(1R,2S)-Methyl Dihydrojasmonate and (+)-(1R,2S)-Magnolione.
J. Org. Chem. 2005, 70, 4876−4878.
(10) Catti, L.; Tiefenbacher, K. Brønsted Acid-Catalyzed Carbonyl-
Olefin Metathesis Inside a Self-Assembled Supramolecular Host.
Angew. Chem., Int. Ed. 2018, 57, 14589−14592.
(11) Tran, U. P. N.; Oss, G.; Pace, D. P.; Ho, J.; Nguyen, T. V.
Tropylium-Promoted Carbonyl-Olefin Metathesis Reactions. Chem.
Sci. 2018, 9, 5145−5151.
(12) For examples of organocatalyzed carbonyl-olefin metathesis,
see: (a) Griffith, A. K.; Vanos, C. M.; Lambert, T. H. Organocatalytic
Carbonyl-Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 18581−
18584. (b) Hong, X.; Liang, Y.; Griffith, A. K.; Lambert, T. H.; Houk,
K. N. Distortion-Accelerated Cycloadditions and Strain-Release-
Promoted Cycloreversions in the Organocatalytic Carbonyl-Olefin
́
(2) See: Zielinski, G. K.; Grela, K. Tandem Catalysis Utilizing Olefin
Metathesis Reactions. Chem. - Eur. J. 2016, 22, 9440−9454. See also
e references cited therein.
(3) (a) Louie, J.; Bielawski, C. W.; Grubbs, R. H. Tandem Catalysis:
The Sequential Mediation of Olefin Metathesis, Hydrogenation, and
Hydrogen Transfer with Single-Component Ru Complexes. J. Am.
Chem. Soc. 2001, 123, 11312−11313. (b) Schmidt, B.; Pohler, M.
Tandem olefin metathesis/hydrogenation at ambient temperature:
activation of ruthenium carbene complexes by addition of hydrides.
Org. Biomol. Chem. 2003, 1, 2512−2517. (c) Børsting, P.; Nielsen, P.
Tandem ring-closing metathesis and hydrogenation towards cyclic
dinucleotides. Chem. Commun. 2002, 2140−2141.
́
Metathesis. Chem. Sci. 2014, 5, 471−475. (c) Ni, S.; Franzen, J.
Carbocation Catalysed Ring Closing Aldehyde-Olefin Metathesis.
Chem. Commun. 2018, 54, 12982−12985.
(13) Tran, U. P. N.; Oss, G.; Breugst, M.; Detmar, E.; Pace, D. P.;
Liyanto, K.; Nguyen, T. V. Carbonyl−Olefin Metathesis Catalyzed by
Molecular Iodine. ACS Catal. 2019, 9, 912−919.
(4) Connolly, T.; Wang, Z.; Walker, M. A.; McDonald, I. M.; Peese,
K. M. Tandem Ring-Closing Metathesis/Transfer Hydrogenation:
Practical Chemoselective Hydrogenation of Alkenes. Org. Lett. 2014,
16, 4444−4447.
(14) (a) Michelet, B.; Tang, S.; Thiery, G.; Monot, J.; Li, H.; Guillot,
R.; Bour, C.; Gandon, V. Catalytic Applications of [IPr·GaX2][SbF6]
and Related Species. Org. Chem. Front. 2016, 3, 1603−1613. (b) Li,
Z.; Thiery, G.; Lichtenthaler, M. R.; Guillot, R.; Krossing, I.; Gandon,
V.; Bour, C. Catalytic Use of Low-Valent Cationic Gallium(I)
Complexes as π-Acids. Adv. Synth. Catal. 2018, 360, 544−549.
(c) Pareek, M.; Bour, C.; Gandon, V. Gallium-Catalyzed Scriabine
Reaction. Org. Lett. 2018, 20, 6957−6960.
(5) Menozzi, C.; Dalko, P. I.; Cossy, J. Reduction of Olefins Using
Ruthenium Carbene Catalysts and Silanes. Synlett 2005, 2449−2452.
́
(6) (a) Zielinski, G. K.; Majtczak, J.; Gutowski, M.; Grela, K. A
Selective and Functional Group-Tolerant Ruthenium-Catalyzed
Olefin Metathesis/Transfer Hydrogenation Tandem Sequence
Using Formic Acid as Hydrogen Source. J. Org. Chem. 2018, 83,
́
2542−2553. (b) Zielinski, G. K.; Samojłowicz, C.; Wdowik, T.; Grela,
K. In tandem or alone: a remarkably selective transfer hydrogenation
of alkenes catalyzed by ruthenium olefin metathesis catalysts. Org.
Biomol. Chem. 2015, 13, 2684−2688.
(15) Michelet, B.; Bour, C.; Gandon, V. Gallium-Assisted Transfer
Hydrogenation of Alkenes. Chem. - Eur. J. 2014, 20, 14488−14492.
(16) Wang, D.; Astruc, D. The Golden Age of Transfer
Hydrogenation. Chem. Rev. 2015, 115, 6621−6686.
(7) Lee, K. Y.; Na, J. E.; Lee, J. Y.; Kim, J. N. Synthesis of
Substituted Cyclopentenes from the Baylis-Hillman Adducts via Ring-
Closing Metathesis Reaction. Bull. Korean Chem. Soc. 2004, 25,
1280−1282.
(17) (a) Tang, S.; Monot, J.; El-Hellani, A.; Michelet, B.; Guillot, R.;
Bour, C.; Gandon, V. Cationic Gallium(III) Halide Complexes: a
New Generation of π-Lewis Acids. Chem. - Eur. J. 2012, 18, 10239−
10243. (b) Bour, C.; Monot, J.; Tang, S.; Guillot, R.; Farjon, J.;
Gandon, V. Structure, Stability, and Catalytic Activity of the Fluorine-
(8) (a) Ravindar, L.; Lekkala, R.; Rakesh, K. P.; Asiri, A. M.;
Marwani, H. M.; Qin, H.-L. Carbonyl−Olefin Metathesis: a Key
Review. Org. Chem. Front. 2018, 5, 1381−1391. (b) Groso, E. J.;
Schindler, C. S. Recent Advances in the Application of Ring-Closing
Metathesis for the Synthesis of Unsaturated Nitrogen Heterocycles.
Synthesis 2019, 51, 1100−1114. (c) Lambert, T. H. Development of a
Hydrazine-Catalyzed Carbonyl-Olefin Metathesis Reaction. Synlett
2019, 30, A−L. (d) Biberger, T.; Makai, S.; Lian, Z.; Morandi, B.
Iron-Catalyzed Ring-Closing C−O/C−O Metathesis of Aliphatic
Ethers. Angew. Chem., Int. Ed. 2018, 57, 6940−6944.
(9) For selected examples of Lewis acid catalyzed carbonyl-olefin
metathesis, see: (a) Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.;
Schindler, C. S. Iron(III)-Catalysed Carbonyl-Olefin Metathesis.
Nature 2016, 533, 374−379. (b) Ma, L.; Li, W.; Xi, H.; Bai, X.;
Ma, E.; Yan, X.; Li, Z. FeCl3-Catalyzed Ring-Closing Carbonyl-Olefin
Metathesis. Angew. Chem., Int. Ed. 2016, 55, 10410−10413.
(c) McAtee, C. C.; Riehl, P. S.; Schindler, C. S. Polycyclic Aromatic
Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis. J.
Am. Chem. Soc. 2017, 139, 2960−2963. (d) Ludwig, J. R.; Phan, S.;
McAtee, C. C.; Zimmerman, P. M.; Devery, J. J.; Schindler, C. S.
Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin
Metathesis Reaction. J. Am. Chem. Soc. 2017, 139, 10832−10842.
(e) Groso, E. J.; Golonka, A. N.; Harding, R. A.; Alexander, B. W.;
Sodano, T. M.; Schindler, C. S. 3-Aryl-2,5-Dihydropyrroles via
Catalytic Carbonyl-Olefin Metathesis. ACS Catal. 2018, 8, 2006−
2011. (f) Albright, H.; Vonesh, H. L.; Becker, M. R.; Alexander, B. W.;
Ludwig, J. R.; Wiscons, R. A.; Schindler, C. S. GaCl3-Catalyzed Ring-
Opening Carbonyl-Olefin Metathesis. Org. Lett. 2018, 20, 4954−
4958. (g) Ludwig, J. R.; Watson, R. B.; Nasrallah, D. J.; Gianino, J. B.;
Zimmerman, P. M.; Wiscons, R. A.; Schindler, C. S. Interrupted
Carbonyl-Olefin Metathesis via Oxygen Atom Transfer. Science 2018,
−
−
−
Bridged Complexes IPr·GaCl2(μ-F)EFn‑1 [EFn− = SbF6 , PF6 , BF4 ].
Organometallics 2014, 33, 594−599.
́
(18) Marion, N.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens,
E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Synthesis,
Characterization, and Structure of [GaCl3(NHC)] Complexes.
Organometallics 2007, 26, 3256−3259.
(19) Of note, other perfluoroanions (PF6, BF4) cannot be used
because the Ga+ ion abstracts a fluorine atom out of them (see ref
17b).
(20) Dziechciejewski, W. J.; Weber, R.; Sowada, O.; Boysen, M. M.
K. Cycloalkene Carbonitriles in Rhodium-Catalyzed 1,4-Addition and
Formal Synthesis of Vabicaserin. Org. Lett. 2015, 17, 4132−4135.
(21) (a) Chatterjee, I.; Oestreich, M. B(C6F5)3-Catalyzed Transfer
Hydrogenation of Imines and Related Heteroarenes Using Cyclohexa-
1,4-Dienes as a Dihydrogen Source. Angew. Chem., Int. Ed. 2015, 54,
1965−1968. (b) Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oestreich, M.
B(C6F5)3-Catalyzed Transfer of Dihydrogen From One Unsaturated
Hydrocarbon to Another. Angew. Chem., Int. Ed. 2015, 54, 12158−
12162. (c) Chatterjee, I.; Oestreich, M. Brønsted Acid-Catalyzed
Transfer Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-
Dienes as Dihydrogen Surrogates. Org. Lett. 2016, 18, 2463−2466.
(d) Keess, S.; Oestreich, M. Cyclohexa-1,4-Dienes in Transition-
Metal-Free Ionic Transfer Processes. Chem. Sci. 2017, 8, 4688−4695.
́
(22) Michelet, B.; Colard-Itte, J.-R.; Thiery, G.; Guillot, R.; Bour, C.;
Gandon, V. Dibromoindium(II) Cations as a π-Lewis Acid:
Characterization of [IPr·InBr2][SbF6] and its Catalytic Activity
Towards Alkynes and Alkenes. Chem. Commun. 2015, 51, 7401−
7404.
E
Org. Lett. XXXX, XXX, XXX−XXX