Andreini et al.
JOCArticle
secondary structures and thereby can act as protein-protein
interaction inhibitors.8,10 For example, they have shown
promising biological activities as antibacterial agents11 and
somatostatin receptor binding12 or anticancer drugs.13 Self-
association of helical β-peptides toward protein-like assem-
blies is also currently studied,14 and mixed R/β-peptides
designed for specific biological functions have also received
much attention in recent years.10c,15,16
work. Peptides containing sugar amino acid building
blocks17,18 have been used extensively in the area of pepti-
domimetic studies,19 oligosaccharide mimetics,20 and as
structural element to induce secondary structures.21
β-Peptides consisting of sugar β-amino acids have also
received much attention. Oligomers incorporating sugar
β-amino acid residues were found to form helical secondary
structures.22,23 Glycosylated β-peptide24 chains that retain
typical helical secondary structure despite the presence of
highly oxygenated carbohydrate appendages have also been
described.25 Sharma and Kunwar have designed C-linked
carbo-β-peptides in which furanoid sugars are linked to a
β-peptide backbone by the C-4 (sugar numbering). Oligo-
mers derived from C-linked carbo-β3-amino acids with
alternating chirality form both 10/12 and 12/10 right-handed
helices, whereas mixed β-peptides derived from alternating
C-linked carbo-β3-amino acids and β-hGly units adopt left-
handed 10/12 and 12/10 helical structures.26 A more surpris-
ing situation is when the anomeric center is merged into the
β-carbon of a β-amino acid residue. We have previously
shown that such structures, N-glycosyl-3-ulosonic acids, are
readily prepared from exo-glycals.27 They are useful building
blocks for the synthesis of spiro sugar-diazepinediones hetero-
cycles28 and can be incorporated into small mixed peptides.29
We recently described short homo-oligomeric cyclic peptides
constituted of anomeric sugar β3,3-amino acids.30 We now give
Sugar amino acids are sugars with both an amino group
and a carboxyl group attached to the carbohydrate frame-
(10) (a) Kritzer, J. A.; Stephens, O. M.; Guarracino, D. A.; Reznik, S. K.;
Schepartz, A. Bioorg. Med. Chem. 2004, 13, 11–16. (b) Stephens, O. M.; Kim,
S.; Welch, B. D.; Hodsdon, M. E.; Kay, M. S.; Schepartz, A. J. Am. Chem.
Soc. 2005, 127, 13126–13127. (c) Sadowsky, J. D.; Fairlie, W. D.; Hadley, E.
B.; Lee, H. S.; Umezawa, N.; Nikolovska-Coleska, Z.; Wang, S.; Huang, D.
C. S.; Tomita, Y.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 139–154.
(11) For antibacterial properties see, for example: Liu, D.; DeGrado, W.
F. J. Am. Chem. Soc. 2001, 123, 7553–7559. Arvidsson, P. I.; Frackenpohl, J.;
Ryder, N. S.; Liechty, B.; Petersen, F.; Zimmermann, H.; Camenisch, G. P.;
Woessner, R.; Seebach, D. ChemBioChem 2001, 2, 771–773. Porter, E. A.;
Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 7324–7330.
Epand, R. F.; Raguse, T. L.; Gellman, S. H.; Epand, R. M. Biochemistry
2004, 43, 9527–9535. Schmitt, M. A.; Weisblum, B.; Gellman, S. H. J. Am.
Chem. Soc. 2007, 129, 417–428. Mowery, B. P.; Lee, S. E.; Kissounko, D. A.;
Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. J. Am.
Chem. Soc. 2007, 129, 15474–15476.
(12) Gademann, K.; Ernst, M.; Hoyer, D.; Seebach, D. Angew. Chem.,
Int. Ed. 1999, 38, 1223–1226. Gademann, K.; Ernst, M.; Seebach, D.; Hoyer,
D. Helv. Chim. Acta 2000, 83, 16–33. Gademann, K.; Kimmerlin, T.; Hoyer,
D.; Seebach, D. J. Med. Chem. 2001, 44, 2460–2468.
(13) Sun, J. J.; Zhou, X. D.; Liu, Y. K.; Tang, Z. Y.; Sun, R. X.; Zhao, Y.;
Uemura, T. J. Cancer Res. Clin. Oncol. 2000, 126, 595–600. Gademann, K.;
Seebach, D. Helv. Chim. Acta 2001, 84, 2924–2937.
(21) For examples, see: Long, D. D.; Smith, M. D.; Marquess, D. G.;
Claridge, T. D. W.; Fleet, G. W. J. Tetrahedron Lett. 1998, 39, 9293–9296.
Claridge, T. D. W.; Long, D. D.; Baker, C. M.; Odell, B.; Grant, G. H.;
Edwards, A. A.; Tranter, G. E.; Fleet, G. W. J.; Smith, M. D. J. Org. Chem.
2005, 70, 2082–2090. Jockusch, R. A.; Talbot, F. O.; Rogers, P. S.; Simone,
M. I.; Fleet, G. W. J.; Simons, J. P. J. Am. Chem. Soc. 2006, 128, 16771–
16777.
(22) Gruner, S. A. W.; Truffault, V.; Voll, G.; Locardi, E.; Stockle, M.;
Kessler, H. Chem.;Eur. J. 2002, 8, 4365–4376. Chandrasekhar, S.; Reddy,
M. S.; Jagadeesh, B.; Prabhakar, A.; Rao, M. H. V. R.; Jagannadh, B. J. Am.
Chem. Soc. 2004, 126, 13586–13587.
(23) For carbohydrate-derived β-peptides based upon an oxetane, see:
Claridge, T. D. W.; Goodman, J. M.; Moreno, A.; Angus, D.; Barker, S. F.;
Taillefumier, C.; Watterson, M. P.; Fleet, G. W. J. Tetrahedron Lett. 2001,
42, 4251. Barker, S. F.; Angus, D.; Taillefumier, C.; Probert, M. R.; Watkin,
D. J.; Watterson, M. P.; Claridge, T. D. W.; Hungerford, N. L.; Fleet, G. W.
J. Tetrahedron Lett. 2001, 42, 4247.
(24) (a) Palomo, C.; Oiarbide, M.; Landa, A.; Gonzalez-Rego, M. C.;
Garcia, J. M.; Gonzalez, A.; Odriozola, J. M.; Martin-Pastor, M.; Linden, A.
J. Am. Chem. Soc. 2002, 124, 8637–8643. (b) Sharma, G. V. M.; Reddy, V. G.;
Chander, A. S.; Reddy, K. R. Tetrahedron: Asymmetry 2002, 13, 21–24. (c)
Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. Tetrahedron Lett. 2004,
45, 2381–2384.
(25) Norgren, A. S.; Arvidsson, P. I. Org. Biomol. Chem. 2005, 3, 1359–
1361. Simpson, G. L.; Gordon, A. H.; Lindsay, D. M.; Promsawan, N.;
Crump, M. P.; Mulholland, K.; Hayter, B. R.; Gallagher, T. J. Am. Chem.
Soc. 2006, 128, 10638–10639. Norgren, A. S.; Arvidsson, P. I. J. Org. Chem.
2008, 73, 5272–5278. Inaba, Y.; Kawakami, T.; Aimoto, S.; Ikegami, T.;
Takeuchi, T.; Nakazawa, T.; Yano, S.; Mikata, Y. Carbohydr. Res. 2009,
344, 613–626.
(26) (a) Sharma, G. V. M.; Reddy, K. R.; Krishna, P. R.; Sankar, A; R.;
Narsimulu, K.; Kumar, S. K.; Jayaprakash, P.; Jagannadh, B.; Kunwar, A.
C. J. Am. Chem. Soc. 2003, 125, 13670–13671. (b) Sharma, G. V. M.; Reddy, K.
R.; Krishna, P. R.; , A. R.; Jayaprakash, P.; Jagannadh, B.; Kunwar, A. C. Angew.
Chem. 2004, 116, 4051-4055; Angew. Chem., Int. Ed. 2004, 43, 3961-3965.
Sharma, G. V. M.; Subash, V.; Reddy, N. Y.; Narsimulu, K.; Ravi, R.; Jadhav, V. B.;
Murthy, U. S. N.; Kishore, K. H.; Kunwar, A. C. Org. Biomol. Chem. 2008, 6,
4142–4156. Sharma, G. V. M.; Rao, K. S.; Ravi, R.; Narsimulu, K.; Nagendar, P.;
Chandramouli, C.; Kumar, S. K.; Kunwar, A. C. Chem. Asian. J. 2009, 4, 181–
193.
(14) Raguse, T. L.; Lai, J. R.; LePlae, P. R.; Gellman, S. H. Org. Lett.
2001, 3, 3963–3966. Qiu, J. X.; Petersson, E. J.; Matthews, E. E.; Schepartz,
A. J. Am. Chem. Soc. 2006, 128, 11338–11339. Horne, W. S.; Price, J. L.;
Keck, J. L.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 4178–4180. Price,
J. L.; Horne, W. S.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 6376–6377.
Petersson, E. J.; Schepartz, A. J. Am. Chem. Soc. 2008, 130, 821–823.
(15) For a review, see: Horne, W. S.; Gellman, S. H. Acc. Chem. Res.
2008, 41, 1399–1408.
(16) Gung, B. W.; Zou, D.; Miyahara, Y. Tetrahedron 2000, 56, 9739–
9746. Price, J. L.; Horne, W. S.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129,
6376–6377. Choi, S. H.; Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2007,
129, 13780–13781. Choi, S. H.; Guzei, I. A.; Spencer, L. C.; Gellman, S. H.
J. Am. Chem. Soc. 2008, 130, 6544–6550.
(17) For reviews on sugar amino acids, see: (a) Lohof, E.; Burkhart, F.;
Born, M. A.; Planker, E.; Kessler, H. In Advances in Amino Acid Mimetics and
Peptidomimetics; JAI Press: Stamford, CT. 1999; Vol. 2, pp 263-292. (b)
Dondoni, A.; Marra, A. Chem. Rev. 2000, 100, 4395–4421. (c) Gruner, S. A.
W.; Locardi, E.; Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491–514. (d)
Schweizer, F. Angew. Chem., Int. Ed. 2002, 41, 230–253. Jensen, K. J.; Brask, J.
Biopolymers 2005, 80, 747–761. Chakraborty, T. K.; Srinivasu, P.; Tapadar, S.;
Mohan, B. K. Glycoconjugate J. 2005, 22, 83–93. Risseeuw, M. D. P.; Overhand,
M.; Fleet, G. W. J.; Simone, M. I. Tetrahedron: Asymmetry 2007, 18, 2001–
2010.
(18) Fuchs, E.-F.; Lehmann, J. Chem. Ber. 1975, 108, 2254–2260. Nico-
laou, K. C.; Florke, H.; Egan, M. G.; Barth, T.; Estevez, V. A. Tetrahedron
Lett. 1995, 36, 1775–1778.
(19) For leading references, see: Chakraborty, T. K.; Jayaprakash, S.;
Diwan, P. V.; Nagaraj, R.; Jampani, S. R. B.; Kunwar, A. C. J. Am. Chem.
Soc. 1998, 120, 12962–12963. Chakraborty, T. K.; Ghosh, S.; Jayaprakash,
S.; Sharma, J. A. R. P.; Ravikanth, V.; Diwan, P. V.; Nagaraj, R.; Kunwar,
A. C. J. Org. Chem. 2000, 65, 6441–6457. Chakraborty, T. K.; Ghosh, S.;
Jayaprakash, S. Curr. Med. Chem. 2002, 9, 421–435. Chakraborty, T. K.;
Ramakrishna Reddy, V.; Sudhakar, G.; Uday Kumar, S.; Jagadeshwar
Reddy, T.; Kiran Kumar, S.; Kunwar, A. C.; Mathur, A.; Sharma, R.;
Gupta, N.; Prasad, S. Tetrahedron 2004, 60, 8329–8339. Prasad, S.; Mathur,
A.; Jaggi, M.; Sharma, R.; Gupta, N.; Reddy, V. R.; Sudhakar, G.; Kumar,
S. U.; Kumar, S. K.; Kunwar, A. C.; Chakraborty, T. K. J. Pept. Res. 2005,
66, 75–84. Chakraborty, T. K.; Roy, S.; Kumar, S. K.; Kunwar, A. C.
Tetrahedron Lett. 2005, 46, 3065–3070. Chakraborty, T. K.; Kumar, S. U.;
Mohan, B. K.; Sarma, G. D.; Kiran, M. U.; Jagadeesh, B. Tetrahedron Lett.
2007, 48, 6945–6950.
(27) Lakhrissi, M.; Chapleur, Y. Angew. Chem., Int. Ed. 1996, 35, 750–
752. Taillefumier, C.; Chapleur, Y. Chem. Rev. 2004, 104, 263–292.
(28) Taillefumier, C.; Thielges, S.; Chapleur, Y. Tetrahedron 2004, 60,
2213–2224.
(29) Taillefumier, C.; Lakhrissi, Y.; Lakhrissi, M.; Chapleur, Y. Tetra-
hedron: Asymmetry 2002, 13, 1707–1711.
(20) For leading references, see: Wessel, H. P.; Mitchell, C.; Lobato, C.
M.; Schmid, G. Angew. Chem., Int. Ed. 1996, 34, 2712–2713. Suhara, Y.;
Yamaguchi, Y.; Collins, B.; Schnaar, R. L.; Yanagishita, M.; Hildreth, J. E.
K.; Shimada, I.; Ichikawa, Y. Biorg. Med. Chem. 2002, 10, 1999–2013.
Sicherl, F; Wittmann, V. Angew. Chem., Int. Ed. 2005, 44, 2096–2099.
(30) Andreini, M.; Taillefumier, C.; Fernette, B.; Chapleur, Y. Lett. Org.
Chem. 2008, 5, 360–364.
7652 J. Org. Chem. Vol. 74, No. 20, 2009