Journal of the American Chemical Society
Communication
(15) Direct spectroscopic identification of an alkyl carbonic acid is
limited by an equilibrium that generally favors free CO2 and the
corresponding organic alcohol: Gassensmith, J. J.; Furukawa, H.;
Smaldone, R. A.; Forgan, R. S.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F.
J. Am. Chem. Soc. 2011, 133, 15312. Formation of alkyl organic
carbonates is possible under supercritical CO2 conditions: West, K. N.;
Wheeler, C.; McCarney, J. P.; Griffith, K. N.; Bush, D.; Liotta, C. L.;
Eckert, C. A. J. Phys. Chem. A 2001, 105, 3947.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(16) Selected references: Dobish, M. C.; Johnston, J. N. J. Am. Chem.
Soc. 2012, 134, 6068. Davis, T. A.; Wilt, J. C.; Johnston, J. N. J. Am. Chem.
Soc. 2010, 132, 2880. Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem.
Soc. 2014, 136, 14734. Denmark, S. E.; Kuester, W. E.; Burk, M. T.
Angew. Chem., Int. Ed. 2012, 51, 10938. Whitehead, D. C.; Yousefi, R.;
Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298. Tan, C. K.;
Zhou, L.; Yeung, Y.-Y. Synlett 2011, 2011, 1335. Paull, D. H.; Fang, C.;
Donald, J. R.; Pansick, A. D.; Martin, S. F. J. Am. Chem. Soc. 2012, 134,
11128. Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org. Biomol. Chem. 2014,
12, 2333.
(17) This particular substrate (3-phenyl-3-butenol) has not been
reported with NaH in THF, but the analogous 3-methyl-3-butenol was
used under similar conditions: Bongini, A.; Cardillo, G.; Orena, M.;
Porzi, G.; Sandri, S. J. Org. Chem. 1982, 47, 4626.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Research reported in this publication was supported by the
National Institute of General Medical Sciences (NIH GM
084333). W.W.W. was supported by an HHMI Fellowship
(Kalamazoo College). We are grateful to Dr. Yasunori Toda and
Dr. Roozbeh Yousefi for the preparation of several alkene
substrates and insightful conversations and to Dr. Maren Pink
(Indiana University Molecular Structure Center) for X-ray
analysis.
REFERENCES
■
́
(18) Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.;
(1) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
Ramdin, M.; de Loos, T. W.; Vlugt, T. J. H. Ind. Eng. Chem. Res. 2012, 51,
8149. Gassensmith, J. J.; Furukawa, H.; Smaldone, R. A.; Forgan, R. S.;
Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. J. Am. Chem. Soc. 2011, 133,
15312.
Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187. Ma, J.;
Zhang, X.; Zhao, N.; Al-Arifi, A. S. N.; Aouak, T.; Al-Othman, Z. A.;
Xiao, F.; Wei, W.; Sun, Y. J. Mol. Catal. A: Chem. 2010, 315, 76.
(19) Hypoiodous acid: Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem.,
Int. Ed. 2010, 49, 1309.
(2) Rochelle, G. T. Science 2009, 325, 1652.
(20) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
(3) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
Additional uses of CO2 as a feedstock: Lindsey, A. S.; Jeskey, H. Chem.
Rev. 1957, 57, 583. Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc.
2012, 134, 11900. Luo, J.; Preciado, S.; Larrosa, I. J. Am. Chem. Soc.
2014, 136, 4109. Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun.
2015, 6. Reduction of CO2 for commodity-based chemical production:
Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.;
Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Nat.
Chem. 2014, 6, 320. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.;
Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J.
F.; Rodriguez, J. A. Science 2014, 345, 546. For recent advances adapting
CO2 in continuous flow synthesis: Kozak, J. A.; Wu, J.; Su, X.; Simeon,
F.; Hatton, T. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135, 18497. Wu,
J.; Kozak, J. A.; Simeon, F.; Hatton, T. A.; Jamison, T. F. Chem. Sci. 2014,
5, 1227.
12672.
(21) Interestingly, the electrophile NIS is sparingly soluble under the
optimized concentration in toluene (0.4 M), suggesting possible phase-
transfer-like activation of NIS by the soluble catalyst, as seen by
Jacobsen: Brindle, C. S.; Yeung, C. S.; Jacobsen, E. N. Chem. Sci. 2013, 4,
2100.
(22) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
(23) Shaikh, A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951.
́
(24) Villiers, C.; Dognon, J.-P.; Pollet, R.; Thuery, P.; Ephritikhine, M.
Angew. Chem., Int. Ed. 2010, 49, 3465. Heldebrant, D. J.; Jessop, P. G.;
Thomas, C. A.; Eckert, C. A.; Liotta, C. L. J. Org. Chem. 2005, 70, 5335.
(25) Denmark, S. E.; Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc. 2010,
132, 1232. Muller, C. H.; Rosner, C.; Hennecke, U. Chem. - Asian J.
̈
̈
2014, 9, 2162. Wu, J.; Wang, Y. M.; Drljevic, A.; Rauniyar, V.; Phipps, R.
J.; Toste, F. D. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13729. Yousefi,
R.; Ashtekar, K. D.; Whitehead, D. C.; Jackson, J. E.; Borhan, B. J. Am.
Chem. Soc. 2013, 135, 14524.
(26) For recent advances in carbonate utilization: Chung, G.-C.; Kim,
H.-J.; Jun, S.-H.; Kim, M.-H. Electrochem. Commun. 1999, 1, 493.
Sanders, D. P.; Fukushima, K.; Coady, D. J.; Nelson, A.; Fujiwara, M.;
Yasumoto, M.; Hedrick, J. L. J. Am. Chem. Soc. 2010, 132, 14724.
Edward, J. A.; Kiesewetter, M. K.; Kim, H.; Flanagan, J. C. A.; Hedrick, J.
L.; Waymouth, R. M. Biomacromolecules 2012, 13, 2483.
(27) 1,1-Disubstituted olefins have generally been challenging for
asymmetric epoxidation: Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, 62,
8622. Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X. Chem. Rev.
2005, 105, 1603. Wang, B.; Wong, O. A.; Zhao, M.-X.; Shi, Y. J. Org.
Chem. 2008, 73, 9539.
(28) It is worth noting the magnesium-dependent enzyme ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCO). RuBisCO incor-
porates CO2 through carbon−carbon bond formation into glucose
precursors. Berry, J. A.; Lorimer, G. H.; Pierce, J.; Seemann, J. R.; Meek,
J.; Freas, S. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 734. Stec, B. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109, 18785.
(4) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
(5) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F.
̈
E. Angew. Chem., Int. Ed. 2011, 50, 8510.
(6) Omae, I. Coord. Chem. Rev. 2012, 256, 1384.
(7) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272.
(8) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
2329. For a metal-free example, see: Yang, Y.; Moinodeen, F.; Chin, W.;
Ma, T.; Jiang, Z.; Tan, C.-H. Org. Lett. 2012, 14, 4762.
(9) Nozaki, K.; Sato, N.; Takaya, H. J. Am. Chem. Soc. 1995, 117, 9911.
Brookhart, M.; Wagner, M. I.; Balavoine, G. G. A.; Haddou, H. A. J. Am.
Chem. Soc. 1994, 116, 3641. Reviews: Tietze, L. F.; Ila, H.; Bell, H. P.
Chem. Rev. 2004, 104, 3453. Bianchini, C.; Meli, A. Coord. Chem. Rev.
2002, 225, 35.
(10) Kielland, N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth. Catal. 2013,
355, 2115.
(11) Decortes, A.; Castilla, A. M.; Kleij, A. W. Angew. Chem., Int. Ed.
2010, 49, 9822.
(12) Maeda, C.; Miyazaki, Y.; Ema, T. Catal. Sci. Technol. 2014, 4, 1482.
(13) Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498.
Lu, X.-B.; Liang, B.; Zhang, Y.-J.; Tian, Y.-Z.; Wang, Y.-M.; Bai, C.-X.;
Wang, H.; Zhang, R. J. Am. Chem. Soc. 2004, 126, 3732. Berkessel, A.;
Brandenburg, M. Org. Lett. 2006, 8, 4401. Luinstra, G. A.; Haas, G. R.;
Molnar, F.; Bernhart, V.; Eberhardt, R.; Rieger, B. Chem.Eur. J. 2005,
11, 6298.
(29) McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem.
1995, 60, 2820. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.;
Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.;
Konno, S. Green Chem. 2003, 5, 497.
(14) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc.
2010, 132, 4072.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX