2 (a) K. Tomioka, K. Ando, Y. Takemasa and K. Koga, J. Am.
Chem. Soc., 1984, 106, 2718; (b) B. M. Trost, R. Radinov and
E. M. Grenzer, J. Am. Chem. Soc., 1997, 119, 7879; (c) T. Ooi,
T. Miki, M. Taniguchi, M. Shiraishi, M. Takeuchi and
K. Maruoka, Angew. Chem., Int. Ed., 2003, 42, 3796;
(d) Z.-L. Wu and Z.-Y. Li, J. Org. Chem., 2003, 68, 2479;
(e) T. B. Poulsen, L. Bernardi, J. Aleman, J. Overgaard and
K. A. Jørgensen, J. Am. Chem. Soc., 2007, 129, 441.
3 The synthesis of mono-a-alkyl 1,3-dicarbonyl synthons via the
acylation of a chiral oxazoline imide enolate was reported by the
Evans group: D. A. Evans, M. D. Ennis, T. Le, N. Mandel and
G. Mandel, J. Am. Chem. Soc., 1984, 106, 1154.
4 For recent reviews on phase-transfer catalysis, see: (a) T. Ooi and
K. Maruoka, Chem. Rev., 2003, 103, 3013; (b) M. J. O’Donnell,
Acc. Chem. Res., 2004, 37, 506; (c) B. Lygo, Acc. Chem. Res., 2004,
37, 518; (d) T. Ooi and K. Maruoka, Angew. Chem., Int. Ed., 2007,
46, 4222; (e) T. Hashimoto and K. Maruoka, Chem. Rev., 2007,
107, 5656.
Fig. 1 A quantum chemical calculation-based stereoscopic view of a
plausible complex between an E-enolate of 2H and catalyst 7 in an
asymmetric PTC alkylation reaction.
5 When ethyl acetoactetate (pKa = 14.2) is transformed into N,N-
dimethyl acetoacetamide (pKa = 18.2), the pKa of its methylene
protons increases by ca. 4: (a) F. G. Bordwell, Acc. Chem. Res.,
1988, 21, 456; (b) F. G. Bordwell and H. E. Fried, J. Org. Chem.,
1991, 56, 4218.
6 (a) H.-g. Park, B.-S. Jeong, M.-S. Yoo, J.-H. Lee, M.-K. Park,
Y.-J. Lee, M.-J. Kim and S.-s. Jew, Angew. Chem., Int. Ed., 2002,
41, 3036; (b) S.-s. Jew, Y.-J. Lee, J. Lee, M. J. Kang, B.-S. Jeong,
J.-H. Lee, M.-S. Yoo, M.-J. Kim, S.-h. Choi, J.-M. Ku and
H.-g. Park, Angew. Chem., Int. Ed., 2004, 43, 2382.
7 (a) E. J. Corey, F. Xu and M. C. Noe, J. Am. Chem. Soc., 1997,
119, 12414; (b) S.-s. Jew, M.-S. Yoo, B.-S. Jeong and H.-g. Park,
Org. Lett., 2002, 4, 4245; (c) T. Ooi, M. Kameda and K. Maruoka,
J. Am. Chem. Soc., 2003, 125, 5139.
8 The lack of racemization was also confirmed by a deuterium
exchange experiment with alkylated product 3D-c, in which no
detectable H–D exchange with 50% KOD in D2O–toluene(ꢀ40 1C,
2 h) was observed.
Scheme 2 The conversion of a-alkyl-N,N-diarylmalonamic tert-butyl
esters 3H and 3I into versatile chiral building blocks.
protection of the resulting primary amine with benzyl chloro-
formate, gave N-Cbz-amino alcohol 1211b (95% ee), which
could be further transformed into the corresponding b-amino
acid by a previously reported oxidation method.17
9 M. J. O’Donnell, W. D. Bennett and S. Wu, J. Am. Chem. Soc.,
1989, 111, 2353.
10 (a) Y.-J. Lee, J. Lee, M.-J. Kim, T.-S. Kim, H.-g. Park and
S.-s. Jew, Org. Lett., 2005, 7, 1557; (b) Y.-J. Lee, J. Lee,
M.-J. Kim, B.-S. Jeong, J.-H. Lee, T.-S. Kim, J. Lee, J.-M. Ku,
S.-s. Jew and H.-g. Park, Org. Lett., 2005, 7, 3207.
11 (a) D. H. Kim, J.-i. Park, S. J. Chung, J. D. Park, N.-K. Park and
J. H. Han, Bioorg. Med. Chem., 2002, 10, 2553; (b) L. Banfi,
G. Guanti and R. Riva, Tetrahedron: Asymmetry, 1999, 10, 3571.
12 The structure of the E-enolate of 2H:
In summary, a highly efficient enantioselective catalytic
a-mono-alkylation of a malonamic ester system has been
developed. The asymmetric PTC alkylation of N,N-diaryl-
malonamic tert-butyl esters afforded the corresponding
a-mono-alkylated products in high chemical and optical
yields, which could then be readily converted to versatile chiral
intermediates, such as a-alkyl-b-hydroxy acids, a-alkyl-b-
amino alcohols and a-alkyl-b-amino acids. The high enantio-
selectivity and mild reaction conditions could make this
method very useful for the synthesis of valuable chiral building
blocks. Further investigations and applications are now under
investigation.
This work was supported by a grant (E00257) from the
Korea Research Foundation (2005).
13 Calculations were performed using GAUSSIAN03. The complex
of an E-enolate of 2H and catalyst 7 was energy-minimized at
RHF/3-21G and UFF, respectively, except selected atoms of the
enolate (ester COO, amide CON, a-carbon and a-hydrogen),
which were calculated at the B3LYP/6-31+G(d) level (ONIOM).
14 (a) G. A. Hall, J. Am. Chem. Soc., 1950, 72, 4709; (b) R. Kaul,
Y. Brouillette, Z. Sajjadi, K. A. Hansford and W. D. Lubell,
J. Org. Chem., 2004, 69, 6131.
15 Anhydrous conditions are critical for the conservation of chirality.
16 L. E. Overman, C. E. Owen, M. M. Pavan and C. J. Richards, Org.
Lett., 2003, 5, 1809.
17 (a) R. A. Barrow, T. Hemscheidt, J. Liang, S. Paik, R. E. Moore
and M. A. Tius, J. Am. Chem. Soc., 1995, 117, 2479; (b) Y. Chi and
S. H. Gellman, J. Am. Chem. Soc., 2006, 128, 6804.
Notes and references
1 For reviews, see: (a) D. A. Evans, in Asymmetric Synthesis, ed.
J. D. Morrison, Academic Press, New York, 1983, vol. 3, ch. 1,
pp. 83–110; (b) A. I. Meyers, in Asymmetric Synthesis, ed.
J. D. Morrison, Academic Press, New York, 1983, vol. 3, ch. 3,
pp. 213–274; (c) T. Hayashi, in Catalytic Asymmetric Synthesis, ed.
I. Ojima, VCH, New York, 1993, ch. 7, pp. 323–331, ch. 8,
pp. 389–398; (d) B. M. Trost and D. L. Van Vranken, Chem.
Rev., 1996, 96, 395. For recent advances, see: (e) K. E. Murphy and
A. H. Hoveyda, J. Am. Chem. Soc., 2003, 125, 4690;
(f) A. G. Doyle and E. N. Jacobsen, J. Am. Chem. Soc., 2005,
127, 62.
ꢁc
This journal is The Royal Society of Chemistry 2009
784 | Chem. Commun., 2009, 782–784