D.J. Burton et al. / Journal of Fluorine Chemistry 129 (2008) 435–442
441
2
125.2 (dd, JCF = 24.4 Hz, JCF = 1.8 Hz, quaternary ring
3
[11] R.N. Haszeldine, J.E. Osborne, J. Chem. Soc. (1955) 3880–3888.
[12] R.N. Haszeldine, J. Chem. Soc. (1954) 4026–4027.
carbon), 126.8 (m, ring carbon), 129.0 (m, ring carbon),
1
140.7 (quaternary ring carbon), 21.9 (CH3 carbon); H NMR
[13] S.W. Hansen, Ph.D. Thesis, University of Iowa, 1984, cf. also [14–17].
[14] G.A. Olah, R.D. Chambers, S. Prakash (Eds.), Synthetic Fluorine Chem-
istry, Wiley-Interscience, 1992, p. 218 (Chapter 9).
(CDCl3) (ppm): 2.30 (s, 3H), 7.03 (d, 3JHH = 8.3 Hz, 2H), 7.08
(d, 3JHH = 8.3 Hz, 2H): FTIR (CCl4): 3038 (w), 2925 (w), 1680
(m), 1613 (w), 1515 (w), 1284 (s), 1125 (m), 1018 (s), 956 (m),
862 (m). HRMS: calculated for C18H14F4; 306.1032, observed
306.1028.
[15] Inorganic Fluorine Chemistry, in: J.S. Thrasher, S.H. Strauss (Eds.), ACS
Symposium #555, 1994, p. 298 (Chapter 18).
[16] Tetrahedron 50 (1994) 2993–3063; D.J. Burton, Z.Y. Yang, P.A. Morken,
Tetrahedron Report #351, p. 3024.
[17] D.J. Burton, S.W. Hansen, J. Fluorine Chem. 31 (1986) 461–465.
[18] S.W. Hansen, Ph.D. Thesis, University of Iowa, 1984, p. 239.
[19] J.D. Park, R.J. Steffl, J.R. Lacher, J. Am. Chem. Soc. 78 (1956) 59–62.
[20] S.W. Hansen, Ph.D. Thesis, pp. 178–179; for detailed experimental
directions to the preparation of [F2C CFZnBr] from F2C CFBr, cf.
[21,22].
4.12. Preparation of (2E,4E,6E,8E)-perfluoro-2,4,6,8-
decatetraene
A 25 ml flask with a septum port was fitted with a stir bar and
N2 tee. Then 5 ml of dry DMSO was syringed into the flask
followed by the addition of activated copper metal (1.0 g,
0.015 mol) and 1.45 g (0.0045 mol) of 1-iodo-1(E),3(E)-
heptafluoropentadiene. The mixture was stirred overnight at
room temperature; then the contents of the flask were flash
distilled. The distillate contained the product as a small bottom
layer, which was pipetted from the distillate to give 0.6 g (69%)
of the tetraene: GLPC purity, 98%; bp 42–43 8C (15 mm/Hg).
[21] P.L. Heinze, D.J. Burton, J. Org. Chem. 53 (1988) 2714–2720.
[22] P. Knochel, P. Jones (Eds.), Organozinc Reagents, Oxford University
Press, NY, 1999, pp. 58–60 (Chapter 4).
[23] The trifluorovinyl reagent can also be prepared from CF3CH2F, cf. [24,25].
[24] R. Anilkumar, D.J. Burton, Tetrahedron Lett. 43 (2002) 2731–2733.
[25] A. Raghavenpillai, D.J. Burton, J. Org. Chem. 69 (2004) 7083–7091.
[26] A. Raghavenpillai, University of Iowa, unpublished results.
[27] C. Lim, D.J. Burton, C.A. Wesolowski, J. Fluorine Chem. 119 (2003) 21–
26.
[28] W.R. Dolbier Jr., H. Koroniak, D.J. Burton, P.L. Heinze, Tetrahedron Lett.
27 (1986) 4387–4390.
3
19F NMR (CDCl3) (ppm): d ꢀ68.0 (dd, CF3, JFF = 8 Hz,
[29] W.R. Dolbier Jr., H. Koroniak, D.J. Burton, P.L. Heinze, A.R. Bailey, G.S.
Shaw, S.W. Hansen, J. Am. Chem. Soc. 109 (1987) 219–225.
[30] P.L. Heinze, Ph.D. Thesis, University of Iowa, 1986.
[31] K. MacNeil, Ph.D. Thesis, University of Iowa, 1991, pp. 250–251.
[32] S.W. Hansen, Ph.D. Thesis, University of Iowa, 1984, p. 180.
[33] P.A. Morken, H. Lu, A. Nakamura, D.J. Burton, Tetrahedron Lett. 32
(1991) 4271–4274.
3
4JFF = 20 Hz); ꢀ155.0 (bd, vinyl F, JFF = 136 Hz), ꢀ155.9
(dq, vinyl F, 3JFF = 136 Hz, 4JFF = 20 Hz), ꢀ150.9 (AB pattern,
middle vinyl F’s); 13C NMR (CDCl3) (ppm): 118.3 (qdd, CF3,
3
4
1JCF = 270 Hz, JCF = 35 Hz, JCF = 4 Hz), vinyl F’s 139.4–
144.6. GCMS; m/z (relative intensity): 386 (M+, 11.8), 317
(85.2), 267 (86.8), 248 (41.1), 229 (28.3), 217 (100.0), 205
(21.0), 198 (20.9), 186 (24.2), 181 (22.6), 179 (51.4), 155
(33.0), 131 (45.6), 117 (34.9), 93 (35.0), 69 (87.8). HRMS:
calculated for C10F14 385.9776, observed 385.9748. FTIR
(CCl4): 700 (m), 912 (m), 920 (m), 1012 (w), 1026 (w), 1146
(s), 1161 (s), 1169 (s), 1180 (s), 1186 (s), 1190 (s), 1201 (s),
1213 (s), 1226 (s), 1234 (s), 1290 (s), 1298 (s), 1304 (s), 1329
(m), 1337 (m), 1362 (s), 1380 (s), 1392 (s), 1425 (w), 1688 (w),
1715 (w).
[34] P.A. Morken, Ph.D. Thesis, University of Iowa, 1992, pp. 55–56; see also
[35] for another citation to this work.
[35] Ref. 16, p. 3020.
[36] Norris and Finnegan [4] reported the formation of CF3CBB CCl when
[CF3CBB CZnCl] was coupled with CuCl2.
[37] C.E. Castro, E.J. Gaughan, D.C. Owsley, J. Org. Chem. 30 (1965) 587–
592.
[38] R.E. Banks, R.N. Haszeldine, D.R. Taylor, G. Webb, Tetrahedron Lett. 60
(1970) 5215–5216.
[39] W. Mahler, J. Am. Chem. Soc. 84 (1962) 4600–4601.
[40] R.D. Chambers, A. Lindley, J. Chem. Soc. Chem. Commun. (1978) 475–
476.
Acknowledgement
[41] P.A. Morken, D.J. Burton, J. Org. Chem. 58 (1993) 1167–1172.
[42] S.W. Hansen, Ph.D. Thesis, University of Iowa. 1984, p. 228 also noted
that trans-(CF3CF CFCu) with FeCl3 gave a modest yield (37%) of the
trans, trans-perfluoro-2,4-hexadiene.
We gratefully appreciate the financial support from the Air
Force Office of Scientific Research and the National Science
Foundation.
[43] G.M. Whitesides, J. San Fillippo Jr., C.P. Casey, E.J. Panek, J. Am. Chem.
Soc. 89 (1967) 5302–5304.
[44] G.M. Whitesides, C.P. Casey, J.K. Krieger, J. Am. Chem. Soc. 92 (1970)
1379–1389.
References
[45] P.A. Morken, Ph.D. Thesis, University of Iowa, 1992, pp. 54–55.
[46] A sample of CF3C(Cu) CF2 prepared from 4 and one equivalent of CuBr
[1] G. Camaggi, S.F. Campbell, D.R.A. Perry, R. Stephens, J.C. Tatlow,
Tetrahedron 22 (1966) 1755–1763.
4
exhibited the following 19F NMR spectrum: d – 47.1 (dd, JFF = 18 Hz,
4JFF = 12 Hz, 3F), ꢀ63.7 (dq, 2JFF = 51 Hz, 4JFF = 18 Hz, 1F), ꢀ72.4. (dq,
[2] A.P. Sevast’yan, Y.A. Fialkov, V.A. Khranovskii, L.M. Yagupol’skii, Zh.
Org. Khim 14 (1978) 204.
4
2JFF = 51 Hz, JFF = 12 Hz, 1F).
[47] P.A. Morken, Ph.D. Thesis, University of Iowa, 1992, pp. 104–105.
[48] 19F NMR of he homodimers of [CF3(C6H5)C CF]2: 19F NMR (CDCl3)
[3] F. Jeanneaux, G. Santini, M. LeBlanc, A. Cambon, J.G. Reiss, Tetrahedron
30 (1974) 4197–4200.
4
(ppm): (E)(E)-isomer: d – 61.3 (t, JFF = 7–8 Hz, 3F), ꢀ95.4 (m, 1F);
[4] W.P. Norris, W.G. Finnegan, J. Org. Chem. 31 (1966) 3292–3295.
[5] A. Cairncross, W.A. Sheppard, J. Am. Chem. Soc. 90 (1968) 2186–2187.
[6] W.T. Miller, R.H. Snider, R.J. Hummel, J. Am. Chem. Soc. 91 (1969)
6532–6534.
(Z)(Z)-isomer: d – 60.3 (dm, 4JFF = 20–25 Hz, 3F), ꢀ99.6 (m, 1F): (E)(Z)-
4
isomer: d – 60.7 (dm, JFF = 22 Hz, 3F), ꢀ96.9 (m, 1F), ꢀ94.3 (dq,
4
3JFF = 40 Hz, JFF = 10 Hz, 1F), ꢀ62.0.(m, 3F).
[49] S.W. Hansen, Ph.D. Thesis, University of Iowa, 1984, p. 204 also noted
qualitatively that trans-CF3CF CFCu on exposure to atmospheric oxy-
gen gave the trans,trans-perfluoro-2,4-hexadiene.
[7] E.J. Blumenthal, D.J. Burton, Israel J. Chem. 39 (1999) 109–115.
[8] R.N. Haszeldine, J. Chem. Soc. (1952) 4423–4431.
[9] A.L. Henne, W. Postelneck, J. Am. Chem. Soc. 77 (1955) 2334–2335.
[10] V. Dedek, Z. Chvatal, J. Fluorine Chem. 31 (1986) 363–379.
[50] V.R. Muller, M. Dressler, C. Dathe, J. Prakt. Chem. (1970) 150.