Journal of the American Chemical Society
Page 8 of 10
15 Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J.
Photo-induced Metal-Catalyst-Free Aromatic Finkelstein
Reaction. J. Am. Chem. Soc. 2015, 137, 8328-8331.
16 Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. Simple and Efficient
Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl
Boronates and Aryl Iodides at Room Temperature. J. Am. Chem.
Soc. 2017, 139, 8621-8627.
17 Please see supporting information for further discussion.
18 Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-
Y.; Wu, L.-Z.; Tung, C.-H. Photocatalytic Hydrogen-Evolution
Cross-Couplings: Benzene C–H Amination and Hydroxylation. J.
Am. Chem. Soc. 2016, 138, 10080-10083.
Supporting Information
1
2
3
4
5
6
7
8
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental details, characterization data and copies of spectra
AUTHOR INFORMATION
Corresponding Author
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
19 Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Visible-Light-Induced
Oxygenation of Benzene by the Triplet Excited State of 2,3-
Dichloro-5,6-dicyano-p-benzoquinone. J. Am. Chem. Soc. 2013,
135, 5368-5371.
20 Tay, N. E. S.; Nicewicz, D. A. Cation Radical Accelerated
Nucleophilic Aromatic Substitution via Organic Photoredox
Catalysis. J. Am. Chem. Soc. 2017, 139, 16100-16104.
21 Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A.
Site-selective arene C-H amination via photoredox catalysis.
Science 2015, 349, 1326-1330.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We are grateful to the Canada Research Chair (Tier 1) foundation,
FRQNT (CCVC), CFI and NSERC for supporting our research. We
are also grateful to Dr. Xiaobo Yang (McGill University) and Dr.
Peng Liu (McGill University) to prepare some substrates used in
this study. We also thank Siting Ni (Lennox group at McGill Uni-
versity) for assistance on UV-Visible and fluorescence spectra
measurements and Yuanjiao Li (Mauzeroll group at McGill Uni-
versity) for assistance on cyclic voltammetric measurements.
22 Kei, O.; Takaki, K.; Shunichi, F. Direct Oxygenation of
Benzene to Phenol Using Quinolinium Ions as Homogeneous
Photocatalysts. Angew. Chem. Int. Ed. 2011, 50, 8652-8655.
23 Albini, A.; Fasani, E.; Dalessandro, N. Radical Cations -
Generation
by
Photochemical
Electron-Transfer
and
REFERENCES
Fragmentation. Coordin. Chem. Rev. 1993, 125, 269-281.
24 Mella, M.; Fagnoni, M.; Freccero, M.; Fasani, E.; Albini, A.
New synthetic methods via radical cation fragmentation. Chem.
Soc. Rev. 1998, 27, 81-89.
25 Fagnoni, M.; Albini, A. Arylation reactions: The photo-S N1
path via phenyl cation as an alternative to metal catalysis. Acc.
Chem. Res. 2005, 38, 713-721.
26 Raviola, C.; Canevari, V.; Protti, S.; Albini, A.; Fagnoni, M.
Metal-free arylations via photochemical activation of the Ar-
OSO2R bond in aryl nonaflates. Green Chem. 2013, 15, 2704-
2708.
27 Qrareya, H.; Protti, S.; Fagnoni, M. Aryl Imidazylates and Aryl
Sulfates As Electrophiles in Metal-Free ArSN1 Reactions. J. Org.
Chem. 2014, 79, 11527-11533.
28 In different contexts, Fagnoni, Albini and co-workers have
demonstrated that certain electron-rich aryl electrophiles can be
coupled with Pi nucleophiles promoted by light without transition
metals. Please see reference 25.
29 Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95,
2457-2483.
30 Thathagar, M. B.; Beckers, J.; Rothenberg, G. Copper-
Catalyzed Suzuki Cross-Coupling Using Mixed Nanocluster
Catalysts. J. Am. Chem. Soc. 2002, 124, 11858-11859.
31 Zim, D.; Monteiro, A. L. Suzuki cross-coupling of aryl halides
with aryl boronic acids catalyzed by phosphine-free NiCl2·6H2O.
Tetrahedron Lett. 2002, 43, 4009-4011.
32 Han, F.-S. Transition-metal-catalyzed Suzuki-Miyaura cross-
coupling reactions: a remarkable advance from palladium to nickel
catalysts. Chem. Soc. Rev. 2013, 42, 5270-5298.
1 C., J. S. C. C.; O., K. M.; J., C. T.; Victor, S. Palladium-Catalyzed
Cross-Coupling: A Historical Contextual Perspective to the 2010
Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062-5085.
2 Colacot, T. J., New Trends in Cross-Coupling: Theory and
Applications. Royal Society of Chemistry: 2014.
3 Corbet, J.-P.; Mignani, G. Selected Patented Cross-Coupling
Reaction Technologies. Chem. Rev. 2006, 106, 2651-2710.
4 Yee, E. L.; Cave, R. J.; Guyer, K. L.; Tyma, P. D.; Weaver, M. J.
A survey of ligand effects upon the reaction entropies of some
transition metal redox couples. J. Am. Chem. Soc. 1979, 101, 1131-
1137.
5 Ng, F. T. T.; Rempel, G. L. Ligand effects on transition metal-
alkyl bond dissociation energies. J. Am. Chem. Soc. 1982, 104, 621-
623.
6 Dijkstra, H. P.; van Klink, G. P. M.; van Koten, G. The Use of
Ultra- and Nanofiltration Techniques in Homogeneous Catalyst
Recycling. Acc. Chem. Res. 2002, 35, 798-810.
7 Bhanage, B. M.; Arai, M. Catalyst product separation techniques
in Heck reaction. Cat. Rev. 2001, 43, 315-344.
8 Sun, C.-L.; Shi, Z.-J. Transition-Metal-Free Coupling Reactions.
Chem. Rev. 2014, 114, 9219-9280.
9 Liu, W.; Li, C.-J. Recent Synthetic Applications of Catalyst-Free
Photochemistry. Synlett 2017, 28, 2714-2754.
10 Studer, A.; Curran, D. P. The electron is a catalyst. Nat. Chem.
2014, 6, 765-773.
11 Alder, R. W. Electron-transfer chain catalysis of substitution
reactions. J. Chem. Soc. Chem. Commun. 1980, 1184-1186.
12 Rossi, R. A.; Pierini, A. B.; Peñéñory, A. B. Nucleophilic
substitution reactions by electron transfer. Chem. Rev. 2003, 103,
71-168.
13 Hokamp, T.; Dewanji, A.; Lübbesmeyer, M.; Mück-
Lichtenfeld, C.; Würthwein, E.-U.; Studer, A. Radical
Hydrodehalogenation of Aryl Bromides and Chlorides with
Sodium Hydride and 1,4-Dioxane. Angew. Chem. Int. Ed. 2017, 56,
13275-13278.
33 Handa, S.; Slack, E. D.; Lipshutz, B. H. Nanonickel-Catalyzed
Suzuki–Miyaura Cross-Couplings in Water. Angew. Chem. Int. Ed.
2015, 54, 11994-11998.
34 Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B. H. Sustainable
Fe–ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-
couplings in water. Science 2015, 349, 1087-1091.
35 We are aware of some examples which claimed that transition-
metal-free Suzuki coupling has been developed. However, it was
later confirmed that these examples were still promoted by trace
amount of Pd catalyst. Please see a) Leadbeater, N. E.; Marco, M.
14 Bunnett, J. F. Aromatic substitution by the SRN1 mechanism.
Acc. Chem. Res. 1978, 11, 413-420.
ACS Paragon Plus Environment