J. Du et al.
Warner IM, Strongin RM. Detection of homocysteine and cysteine. J
Am Chem Soc 2005;127:15949–58.
12. Lee KS, Kim TK, Lee JH, Kim HJ, Hong JI. Fluorescence turn-on probe
for homocysteine and cysteine in water. Chem Commun
2008;6173–5.
13. Tanaka F, Mase N, Barbas III CF. Determination of cysteine concentra-
tion by fluorescence increase: reaction of cysteine with a fluorogenic
aldehyde. Chem Commun 2004;1762–3.
14. Li HL, Fan JL, Wang Y, Tian MZ, Du JJ, Sun SG, Sun PP, Peng XJ. A
fluorescent chemodosimeter specific for cysteine: effective discrimi-
nation of cysteine from homocysteine. Chem Commun 2009;
5904–6.
15. Duan LP, Xu YF, Qian XH, Wang F, Liu JW, Cheng TY. Highly selective
fluorescent chemosensor with red shift for cysteine in buffer solution
and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron
Lett 2008;49:6624–7.
16. Kim TK, Lee DN, Kim HJ. Highly selective fluorescent sensor
for homocysteine and cysteine. Tetrahedron Lett 2008;49:4879–
81.
17. Zhang M, Li MY, Zhao Q, Li FY, Zhang DQ, Zhang JP, Yi T, Huang CH.
Novel Y-type two-photon active fluorophore: synthesisand applica-
tion in fluorescent sensor for cysteine and homocysteine. Tetrahe-
dron Lett 2007;48:2329–33.
18. Zhang XJ, Ren XS, Xu QH, Loh KP, Chen ZK. One- and two-photon
turn-on fluorescent probe for cysteine and homocysteine with large
emission shift. Org Lett 2009;11:1257–60.
350
300
250
200
150
100
50
0
1 2 3 4 5 6 7 8 9 101112131415161718
Figure 10. Fluorescence intensity changes of 1 (20.0 mmol L-1) after addition of
different analytes (100 mmol L-1) in the presence of Cys (10 mmol L-1) in ethanol–
water (20:80, v/v) at pH 7.4 phosphate buffer solution. Grey bars represent the
addition of the appropriate amino acids, metal ions or H2O2 to the solution of 1.
White bars represent the subsequent addition of Cys to the solution: (1) 1 only; (2)
Cys; (3) Arg; (4) Glu; (5) His; (6) Val; (7) Asp; (8) Gly; (9) Met; (10) Tyr; (11) Thr; (12) Leu;
(13) Lys; (14)K+; (15) Ca2+; (16) Mg2+; (17) Zn2+; (18) H2O2.
19. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N. 2,4-
Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ell-
man’s reagent in thiol-quantification enzyme assays. Angew Chem
Int Edn 2005;44:2922–5.
Acknowledgments
21. Wang SP, Deng WJ, Sun D, Yan M, Zheng H, Xu JG. A colorimetric and
fluorescent merocyanine-based probe for biological thiols. Org
Biomol Chem 2009;7:4017–20.
22. Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA. A highly
selective fluorescent probe for thiol bioimaging. Org Lett 2008;
10:37–40.
23. Jiang W, Fu QQ, Fan HY, Ho J, Wang W. A highly selective fluorescent
probe for thiophenols. Angew Chem Int Edn 2007;46:8445–8.
24. Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y. Rhodamine-based
fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett
2008;18:2246–9.
We are grateful to the Science and Technology Department (no.
SJ08B05), the Education Department of Shaanxi Province of
China (no. 09JK787) and NWU Graduate Experimental Research
Funds (09YSY19). Z. Yang was supported by the National Science
Foundation for FosteringTalents in Basic Research of the National
Natural Science Foundation of China (no. J0830417).
References
25. Tang B, Yin LL, Wang X, Chen ZZ, Tong LL, Xu KH. A fast-response
highly sensitive and specific organoselenium fluorescent probe for
thiols and its application in bioimaging. Chem Commun
2009;5293–5.
26. Tang B, Xing YL, Li P, Zhang N, Yu FB, Yang GW. A rhodamine-
based fluorescent probe containing a Se-N bond for detecting
thiols and its application in living cells. J Am Chem Soc 2007;
129:11666–7.
1. Cecchi C, Latorraca S, Sorbi S, Iantomasi T, Favilli F, Vincenzini MT,
Liguri G. Gluthatione level is altered in lymphoblasts from patients
with familial Alzheimer’s disease. Neurosci Lett 1999;275:152–4.
2. Staal FJ, Ela TS, Roederer M, Anderson MT, Herzenberg LA. Glu-
tathione deficiency and human immunodeficiency virus infection.
Lancet 1992;339:909–12.
3. White AC, Thannickal VJ, Fanburg BL. Glutathione deficiency in
human disease. J Nutr Biochem 1994;5:218–26.
27. Yang XF, Su Z, Liu CH, Qi HP, Zhao ML. A thiol-selective fluorogenic
probe based on the cleavage of 4-methylumbelliferyl-2′,4′,6′-
trinitropheyl ether. Anal Bioanal Chem 2010;396:2667–74.
28. Hong V, Kislukhin AA, Finn MG. Thiol-selective fluorogenic probes for
labeling and release. J Am Chem Soc 2009;131:9986–94.
29. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D,
Yi T, Huang C. A highly selective fluorescence turn-on sensor for
cysteine/homocysteine and its application in bioimaging. J Am Chem
Soc 2007;129:10322–3.
30. Huang ST, Ting KN, Wang KL. Development of a long-wavelength
fluorescent probe based on quinone–methide-type reaction to
detect physiologically significant thiols. Anal Chim Acta 2008;
620:120–6.
4. Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. A highly sensitive fluorescence
probe for fast thiol-quantification assay of glutathione reductase.
Angew Chem Int Edn 2009;48:4034–7.
5. Lin W, Yuan L, Cao Z, Feng Y, Long L. A sensitive and selective fluo-
rescent thiol probe in water based on the conjugate 1,4-addition of
thiols to a,b-unsaturated ketones. Chem Eur J 2009;15:5096–103.
6. Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T. A thiol-reactive
fluorescence probe based on donor-excited photoinduced electron
transfer: key role of ortho substitution. Org Lett 9:3375–7.
7. Guo XF, Wang H, Guo YH, Zhang HS. Selective spectrofluorimetric
determination of glutathione in clinical and biological samples using
1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-
indacene. Anal Chim Acta 2009;633:71–5.
31. Lee JH, Lim CS, Tian YS, Han JH, Cho BR. A two-photon fluorescent
8. Chen XQ, Ko SK, Kim MJ, Shin I, Yoon J. A thiol-specific fluorescent
probe and its application for bioimaging. Chem Commun
2010;46:2751–3.
probe for thiols in live cells and tissues.
2010;132:1216–7.
J Am Chem Soc
32. Pires MM, Chmielewski J. Fluorescence imaging of cellular glu-
tathione using a latent rhodamine. Org lett 2008;10:837–40.
33. Dubernet M, Caubert V, Guillard J, Viaud-Massuard M. Synthesis of
substituted bis(heteroaryl)maleimides. Tetrahedron 2005;61:4585–
93.
34. Kalia J, Raines RT. Catalysis of imido group hydrolysis in a maleimide
conjugate. Bioorg Med Chem Lett 2007;17:6286–9.
35. Khatik GL, Kumar R, Chakraborti AK. Catalyst-free conjugated addi-
tion of thiols to a, b-unsaturated carbonyl compounds in water. Org
Lett 2006;8:2433–6.
9. Sreejith S, Divya KP, Ajayaghosh A. A near-infrared squaraine dye as a
latent ratiometric fluorophore for the detection of aminothiol
content in blood plasma. Angew Chem Int Ed 2008;47:7883–7.
10. Li HL, Fan JL, Wang JY, Tian MZ, Du JJ, Sun SG, Sun PP, Peng XJ. A
fluorescent chemodosimeter specific for cysteine: effective discrimi-
nation of cysteine from homocysteine. Chem Commun 2009;
5904–6.
11. Wang WH, Rusin O, Xu XY, Kim KK, Escobedo JO, Fakayode SO,
Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR,
wileyonlinelibrary.com/journal/luminescence
Copyright © 2010 John Wiley & Sons, Ltd.
Luminescence 2011; 26: 486–493