1302
T. Yajima et al. / Tetrahedron Letters 50 (2009) 1301–1302
Table 1
Addition of i-PrI to
a
-methylene-
c
-phenyl-
c-butyrolactams
P
P
N
P
N
i-PrI (3 equiv)
N
Ph
O
Ph
O
Ph
O
+
CH2Cl2
conditions
i-Pr
trans
i-Pr
cis
1: P = H
4: P = H
2: P = Boc
3: P = Piv
5: P = Boc
6: P = Piv
Entry
Substrate
Conditions
n-Bu3SnH (2 equiv), Et3B (1 equiv), 0 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), MgBr2–OEt2 (3 equiv), 0 °C
Product
Yield (%)
cis:transa
1
2
3
4
5
6
7
8
9
1
1
1
2
2
2
3
3
3
4
4
4
5
4
4
6
6
6
64
92
55
84
70
85
69
64
71
79:21
77:23
93:7
82:18
18:82
76:24
68:32
11:89
9:91
(Me3Si)3SiH (2 equiv), AIBN (0.2 equiv), h
m, rt
n-Bu3SnH (2 equiv), Et3B (1 equiv), 0 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), MgBr2–OEt2 (3 equiv), 0 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), BF3–OEt2 (3 equiv), 0 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), 0 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), MgBr2–OEt2 (3 equiv), ꢀ78 °C
n-Bu3SnH (2 equiv), Et3B (1 equiv), Yb(OTf)3 (3 equiv), ꢀ78 °C
a
Diastereomer ratios were determined by 1H NMR. The relative configuration of 4 was assigned by NOE analysis. The relative configurations of 5 and 6 were determined by
comparing the chemical shift values in 1H and 13C NMR with those of 4.
Table 2
Addition of RI to
TTMSS
a
-methylene-
c
-phenyl-
c-butyrolactams
H
N
P
N
P
R
P
N
Ph
H
RI (3 equiv)
P = H
Ph
Ph
O
N
Ph
O
Ph
O
Ph
O
O
N
H
+
CH2Cl2
R
conditions A or B
R
cis
R
trans
cis
P
N
TTMSS
Ph
O
1: P = H
7-10: P = H
11-14: P = Piv
3: P = Piv
n-Bu3SnH
a
Entry
Substrate
Conditions
R
Product Yield (%)
cis:transb
Piv
N
R
1
2
3
4
5
6
7
8
1
1
1
1
3
3
3
3
A
A
A
A
B
B
B
B
Et
7
8
9
10
11
12
13
14
75
55
62
63
75
94
66
80
98:2
93:7
94:6
92:8
14:86
20:80
20:80
24:76
O
Ph
n-Bu
t-Bu
Cyclo-hex
Et
n-Bu
t-Bu
O
N
H
P = Piv
L.A.
R
R'
O
L.A.
trans
n-Bu3SnH
Scheme 2. Diastereoselectivities in the addition of RI to a-methylene-c-phenyl-c-
Cyclo-hex
butyrolactams.
a
Conditions A; TTMSS (2 equiv), AIBN (0.2 equiv), hm, rt. Conditions B; Bu3SnH
(2 equiv), Et3B (1 equiv), Yb(OTf)3 (3 equiv), ꢀ78 °C.
b
Diastereomer ratios were determined by 1H NMR. The relative configuration of
11 was assigned by NOE analysis. The relative configurations of 7–10 and 12–14
were determined by comparing the chemical shift values in 1H and 13C NMR with
those of 4 and 11, respectively.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
the hydrogen transfer may participate in the face selectivity. The
carbonyl oxygen of lactam and that of the N-protecting group
(Boc or Piv) coordinate with the Lewis acid (MgBr2–OEt2 or
Yb(OTf)3) to form a six-membered chelate. The Lewis acid coordi-
nates from the less-hindered convex face (opposite to the phenyl
group), and forces the incoming hydrogen donor to attack the rad-
ical face where the phenyl is located.
1. For reviews and books, see: (a) Smadja, W. Synlett 1994, 1–26; (b) Porter, N. A.;
Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296–304; (c) RajanBabu, T. V. Acc.
Chem. Res. 1991, 24, 139–145; (d) Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions; VCH: Weinheim, 1996; (e) Renaud, P.; Sibi,
M. P. In Radicals in Organic Synthesis; VCH: Weinheim, 2001; Vols. 1–2, (f)
Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61, 10377–10441.
2. For a review on 1,3-asymmetric induction, see: Mengel, A.; Reiser, O. Chem. Rev.
1999, 99, 1191–1223.
In summary, we have reported that the 1,3-asymmetrically in-
3. Our recent reports on the chelation-controlled syn selective 1,3-asymmetric
duced alkyl radical addition to
a-methylene-c-phenyl-c-butyro-
induction in the radical-mediated additions to
a-methylene-c-oxycarboxylic
acid esters. (a) Nagano, H.; Toi, S.; Yajima, T. Synlett 1999, 53–54; (b) Nagano, H.;
Hirasawa, T.; Yajima, T. Synlett 2000, 1073–1075; (c) Nagano, H.; Matsuda, M.;
Yajima, T. J. Chem. Soc., Perkin Trans. 1 2001, 174–182; (d) Nagano, H.; Toi, S.;
Hirasawa, T.; Matsuda, M.; Hirasawa, S.; Yajima, T. J. Chem. Soc., Perkin Trans. 1
2002, 2525–2538; (e) Nagano, H.; Ohkouchi, H.; Yajima, T. Tetrahedron 2003, 59,
3649–3663; (f) Yajima, T.; Okada, K.; Nagano, H. Tetrahedron 2004, 60, 5683–
5693.
lactams occurs with a remarkable diastereochemical switch. The
reactions of lactam 1 using (Me3Si)3SiH under UV irradiation give
cis-a,c-disubstituted lactams, whereas the reactions of N-pivaloyl-
lactam 3 using Et3B and n-Bu3SnH in the presence of Yb(OTf)3 give
trans-disubstituted lactams. Because synthetic methods for such
a,c-disubstituted lactams are scarce, this methodology provides
an efficient stereoselective synthetic route to new lactam com-
pounds. Further applications and improvements of the reaction
are now in progress, and the mechanistic details are being
resolved.
4. The stereochemical feature of the radical reaction to lactones, see: (a) Urabe, H.;
Kobayashi, K.; Sato, F. J. Chem. Soc., Chem. Commun. 1995, 1043–1044; (b)
Steurer, S.; Podlech, J. Eur. J. Org. Chem. 2002, 899–916.
5. Axon, J. R.; Beckwith, A. L. J. J. Chem. Soc., Chem. Commun. 1995, 549–550.
6. El Alami, N.; Belaud, C.; Villieras, J. Synth. Commun. 1988, 18, 2073–2081.
7. For a review, see: Chatgilialoglu, C. Chem. Eur. J. 2008, 14, 2310–2320.