Worlikar and Larock
JOCArticle
In synthetic organic chemistry, transition-metal-catalyzed
annulation reactions have played a particularly valuable role
of late.12 For instance, a variety of carbocycles and hetero-
cycles have been synthesized by the Pd-catalyzed annulation
of alkynes by substituted aryl and vinylic halides.13 How-
ever, the major difficulty in applying these reactions to
arynes is the high reactivity of arynes14 compared to alkynes,
and the harsh reaction conditions often needed to generate
arynes in situ, which also severely limits the functional group
compatibility of the chemistry. Arynes often undergo Pd-
catalyzed cyclotrimerization15 to form polycyclic aromatic
hydrocarbons as a result of their high reactivity. A very
mild method of aryne generation from silylaryl triflate 2a in
the presence of CsF16 has been used in our research labora-
tories and reported in the literature for a variety of Pd-
catalyzed annulation reactions,17 cycloaddition reactions,18
electrophilic and nucleophilic reactions,19 and insertion
reactions.20
also been reported in the literature.22 We recently reported
the palladium-catalyzed aryne insertion and subsequent
cyclization of o-halostyrenes to give 9-fluorenylidenes.23
We report herein full details of our work on the synthesis of
9-fluorenylidenes and extensions of our methodology to
obtain phenanthrenes from o-halo allylic benzenes by pal-
ladium-catalyzed aryne insertion and subsequent cycliza-
tion.
Results and Discussion
The focus of our early studies on this project was the
palladium-catalyzed aryne annulation of substituted o-
halostyrenes to give substituted 9-fluorenylidenes in good
yields. (E)-3-(2-Iodophenyl)acrylonitrile (1a) was used as a
model system for optimization of the reaction conditions,
and 2-(trimethylsilyl)phenyl trifluoromethanesulfonate
(2a) was used as the aryne precursor. Early in this work,
the reaction was run with 0.3 mmol of 1a, 2.0 equiv of 2a,
5 mol % Pd(dba)2, 5 mol % P(o-tolyl)3, and 3 equiv of CsF
as the base in 5 mL of 1:9 acetonitrile/toluene at 110 °C in a
sealed vial to obtain a 28% isolated yield of the desired
2-(9H-fluoren-9-ylidene)acetonitrile (3a) (eq 1; Table 1,
entry 1).
We have previously reported palladium-catalyzed alkyne
annulations using ethyl (E)-4-(2-iodophenyl)-2-butenoate
to obtain naphthalenes,21 and the palladium-catalyzed
alkyne annulation of methyl 3-(2-iodophenyl)acrylate has
(10) (a) Fernandez, F.; Gomez, G.; Lopez, C.; Santos, A. Synthesis 1988,
802. (b) Amin, S.; Balanikas, G.; Huie, K.; Hussain, N.; Geddie, J. E.; Hecht,
S. S. J. Org. Chem. 1985, 50, 4642. (c) Tomioka, H.; Okuno, A.; Sugiyama,
T.; Murata, S. J. Org. Chem. 1995, 60, 2344. (d) Kim, Y. H.; Lee, H.; Kim, Y.
J.; Kim, B. T.; Heo, J.-N. J. Org. Chem. 2008, 73, 495. (e) Almeida, J. F.;
ꢀ
Castedo, L.; Fernandez, D.; Neo, A. G.; Romero, V.; Tojo, G. Org. Lett.
2003, 5, 4939. (f) Wassmundt, F. W.; Kiesman, W. F. J. Org. Chem. 1995, 60,
196. (g) Bremmer, M. L.; Khatri, N. A.; Weinreb, S. M. J. Org. Chem. 1983,
48, 3661. (h) Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R. Tetrahedron
Lett. 2002, 43, 3185. (i) Cai, X.; Brown, S.; Hodson, P.; Snieckus, V. Can. J.
Previously in our laboratories, we have found that the
polarity of the acetonitrile/toluene solvent system greatly
affects the yields of the aryne products under our experi-
mental conditions, as it controls the rate of aryne forma-
tion. An increase in the polarity of the solvent system only
slightly increased the yield of the desired product 3a
(entries 2-5). When the reaction was run in pure acetoni-
trile, the yield dropped to 25% (entry 6) with a simulta-
neous increase in the amount of the triphenylene side
product resulting from palladium-catalyzed cyclotrimeri-
zation of the benzyne. None of the desired product was
obtained when pure toluene was used as the solvent for the
reaction, and both the starting o-halostyrene 1a and the
benzyne precursor 2a remained unreacted under those
conditions (entry 7). We believe that this is due to the low
solubility of the fluoride source in toluene, which hinders
formation of the benzyne. With 1:1 acetonitrile/toluene as
the optimized solvent system for the reaction, we tried to
improve the yield of the desired product 3a by increasing
the amount of the Pd(dba)2 catalyst to 10 mol % and the
P(o-tolyl)3 ligand to 10 mol %. There was only a slight
increase in the yield of the desired product 3a to 39% (entry
8). An increase in the P(o-tolyl)3 ligand to 20 mol % further
increased the yield to 49% (entry 9). While maintaining a
1:2 ratio of the Pd(dba)2 to the P(o-tolyl)3 but further
increasing the amount of the catalyst and the ligand, no
significant increase in the yield was observed (entry 10).
The reaction in the absence of P(o-tolyl)3 did not yield the
desired product 3a (entry 11).
ꢀ
Chem. 2004, 82, 195. (j) Monsieurs, K.; Rombouts, G.; Tapolcsanyi, P.;
Matyus, P.; Maes, B. U. W. Synlett 2006, 3225. (k) Iuliano, A.; Piccioli, P.;
ꢀ
Fabbri, D. Org. Lett. 2004, 6, 3711. (l) Hilt, G.; Hess, W.; Schmidt, F. Eur. J.
Org. Chem. 2005, 2526. (m) Gies, A. -E.; Pfeffer, M. J. Org. Chem. 1999, 64,
3650. (n) Kraus, G. A.; Hoover, K.; Zhang, N. Tetrahedron Lett. 2002, 43,
5319. (o) Seganish, W. M.; DeShong, P. Org. Lett. 2006, 8, 3951. (p) Mandal,
A. B.; Lee, G. -H.; Liu, Y. -H.; Peng, S. -M.; Leung, M. -K. J. Org. Chem.
2000, 65, 332. (q) Dyker, G.; Kellner, A. Tetrahedron Lett. 1994, 35, 7633.
(r) Yoshikawa, E.; Yamamoto, Y. Angew. Chem., Int. Ed. 2000, 39, 173.
~
ꢀ
ꢀ
(11) (a) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. J. Am. Chem. Soc.
1999, 121, 5827. (b) Kanno, K. I.; Liu, Y.; Iesato, A.; Nakajima, K.;
Takahashi, T. Org. Lett. 2005, 7, 5453. (c) Liu, Z.; Larock, R. C. Angew.
~
ꢀ
Chem., Int. Ed. 2007, 46, 2535. (d) Pena, D.; Perez, D.; Guitian, E.; Castedo,
ꢀ
L. Eur. J. Org. Chem. 2003, 7, 1238.
(12) (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev.
1996, 96, 635. (b) Rubin, M.; Sromek, A. W.; Gevorgyan, V. Synlett 2003,
2265.
(13) (a) Larock, R. C. Pure Appl. Chem. 1999, 71, 1435. (b) Larock, R. C. In
Topics in Organometallic Chemistry; Springer: Berlin, Germany, 2005; p 147.
(14) For reviews on the use of arynes in organic synthesis, see: (a) Kessar,
S. V. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, NY, 1991; Vol. 4, p 483. (b) Pellissier, H.; Santelli, M.
Tetrahedron 2003, 59, 701.
~
ꢀ
ꢀ
(15) (a) Pena, D.; Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. Angew.
~
ꢀ
ꢀ
Chem., Int. Ed. 1998, 37, 2659. (b) Pena, D.; Perez, D.; Guitian, E.; Castedo,
~
ꢀ
ꢀ
L. Org. Lett. 1999, 1, 1555. (c) Pena, D.; Cobas, A.; Perez, D.; Guitian, E.;
Castedo, L. Org. Lett. 2000, 2, 1629.
(16) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211.
(17) (a) Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127,
15716. (b) Zhang, X.; Larock, R. C. Org. Lett. 2005, 7, 3973. (c) Liu, Z.;
Larock, R. C. Org. Lett. 2004, 6, 3739. (d) Liu, Z.; Larock, R. C. Tetrahedron
2007, 63, 347. (e) Waldo, J. P.; Xiaoxia, Z.; Shi, F.; Larock, R. C. J. Org.
Chem. 2008, 73, 6679.
(18) Liu, Z.; Shi, F.; Martinez, P. D. G.; Raminelli, C.; Larock, R. C.
J. Org. Chem. 2008, 73, 219.
(19) Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun.
2001, 1880. (b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew.
Chem., Int. Ed. 2002, 41, 3247. (c) Liu, Z.; Larock, R. C. Org. Lett. 2003, 5,
4673. (d) Liu, Z.; Larock, R. C. Org. Lett. 2004, 6, 99.
(20) (a) Liu, Z.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 13112.
(b) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340. (c) Pi,
S.-F.; Tang, B.-X.; Li, J.-H.; Liu, Y.-L.; Liang, Y. Org. Lett. 2009, 11, 2309.
(21) Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 7342.
(22) Grigg, R.; Kennewell, P.; Teasdale, A.; Sridharan, V. Tetrahedron
Lett. 1993, 34, 153.
(23) Worlikar, S. A.; Larock, R. C. Org. Lett. 2009, 11, 2413.
J. Org. Chem. Vol. 74, No. 23, 2009 9133