1506
F. Yakushiji et al. / Tetrahedron Letters 50 (2009) 1504–1506
Table 2
IMOM reaction under high-pressure conditions
Entry
Enoate (config.)
Pressure (kbar)
Conditions
Yield (%)
18:19
1
2
3
4
5
9 (E)
9 (E)
16 (Z)
17 (Z/E = 6:1)
16 (Z)
12.6
10.9
13.3
12.9
—
iPr2NEt/CH2Cl2 = 1/9, rt, 15 h
iPr2NEt/CH2Cl2/EtOH = 1/4.5/4.5, rt, 19 h
iPr2NEt/CH2Cl2 = 1/9, rt, 19 h
iPr2NEt/CH2Cl2 = 1/9 rt, 18 h
62
96
96
99
4.6:1
16:1
>99:1
>99:1
iPr2NEt/CH2Cl2 = 1/9, rt, 7 days
Recovered
6. For a review, see: (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545; (b) Masaki,
H.; Maeyama, J.; Kamada, K.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. J. Am.
Chem. Soc. 2000, 122, 5216; (c) Harvey, J. E.; Raw, S. A.; Taylor, R. J. K. Org. Lett.
2004, 6, 2611; (d) Li, D. R.; Murugan, A.; Falck, J. R. J. Am. Chem. Soc. 2008, 130,
46. and references cited therein.
7. (a) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New
York, 1994; (b) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735.
8. (a) Isaacs, N. S. In Liquid-Phase High Pressure Chemistry; John Wiley and Sons:
Chichester, New York, Brisbane, Tronto, 1984; pp 182–201; (b) VanEldik, R.;
Asano, T.; Le Noble, W. J. Chem. Rev. 1989, 89, 549; (c) Klärner, F. G.; Ruster, V.;
Zimny, B.; Hochstrate, D. High-Pressure Res. 1991, 7, 133; (d) Matsumoto, K.;
Hamana, H.; Iida, H. Helv. Chim. Acta 2005, 88, 2033.
9. (a) Uchida, T.; Matsumoto, K. Chem. Lett. 1981, 1673; (b) Bunce, A. R.; Schlecht,
F. M.; Dauben, G. W.; Heathcock, C. H. Tetrahedron Lett. 1983, 24, 4943; (c)
Dauben, G. W.; Gerdes, M. J. Tetrahedron Lett. 1983, 24, 3841; (d) Dauben, G. W.;
Bunce, A. R. J. Org. Chem. 1983, 48, 4642; (e) Kotsuki, H.; Arimura, K. Tetrahedron
Lett. 1997, 38, 7583; (f) Jenner, G. New J. Chem. 1999, 23, 525; (g) Camara, C.;
Joseph, O.; Dumas, F.; d’Angelo, J.; Chiaroni, A. Tetrahedron Lett. 2002, 43, 1445;
(h) Knappwost-Gieseke, C.; Nerenz, F.; Wartchow, R.; Winterfeldt, E. Chem. Eur.
J. 2003, 9, 3849.
10. (a) d’Angelo, J.; Maddaluno, J. J. Am. Chem. Soc. 1986, 108, 8112; (b) Dumas, F.;
Fressigné, C.; Langlet, J.; Giessner-Prettre, C. J. Org. Chem. 1999, 64, 4725.
11. It has been reported that the enolate anion, generated in situ, added to the b-
carbon of butenolide intramolecularly under high-pressure conditions.9h
12. Toste, F. D.; Chatterjee, A. K.; Grubbs, R. H. Pure Appl. Chem. 2002, 74, 7.
13. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168.
OH
TMS
TMS
MOMO
R
18: R1=MOM
nBuLi
BF3•OEt2
–78 °C, 2 h
O
20: R=CO2Et (40%)
22: R=CH2OPMP
1. LiOH•H2O
THF, H2O, rt, 2 h
2. ClCO2Et, Et3N
then NaBH4
O
MOMO
PMPO
TMS
0 °C, 10 min
nBuLi
BF3•OEt2
–78 °C, 2 h
(98%)
O
3. p-MeOC6H4OH
DIAD, Ph3P
21
rt, 40 min
(88%, 3 steps)
PMP= p-MeOC6H4–
Scheme 3. Transformation of 18 to the C3–C10 segment 22.
p-methoxyphenyl (PMP) ether using the Mitsunobu protocol to
give 21 in 88% yield for the three steps. The latter was then treated
under the same reaction conditions as for 18 to provide the pyran
22 with the requisite four contiguous stereogenic centers in excel-
lent yield (Scheme 3).
14. Higashibayashi, S.; Shinko, K.; Ishizu, T.; Hashimoto, K.; Shirahama, H.; Nakata,
M. Synlett 2000, 1306.
15. Ando, K. J. Org. Chem. 1998, 63, 8411.
In summary, an efficient protocol for the highly diastereoselec-
tive synthesis of the 2,3,4,5-tetrasubstituted tetrahydropyran core
structure of the thiomarinols and pseudomonic acid antibiotics
was devised with use of the IMOM reaction of the epoxy hydroxy
Z-enoate under both basic and high-pressure conditions. It should
be emphasized that this is the first time that the IMOM reaction for
assembling the substituted tetrahydropyrans under high-pressure
has been efficiently accomplished. Efforts aimed at completion of
the total synthesis of thiomarinols are ongoing and will be re-
ported in due course.
16. Reactions of 9 and 16 under high-pressure conditions in the presence of other
bases/solvents
(Et3N/CH2Cl2,
Et3N/THF,
(À)-quinine/CH2Cl2,
and
diphenylguanidine/trifluorotoluene) led to lower yields and poor
diastereoselectivities.
17. Al-Badri, H.; Maddaluno, J.; Masson, S.; Collignon, N. J. Chem. Soc., Perkin Trans.
1 1999, 2255.
18. Compound 18: Colorless oil. IR (neat) cmÀ1: 2901, 1735, 1446, 1257, 1148,
1045, 914, 728; a2D7 À34.27 (c 1.07, CHCl3); 1H NMR (400 MHz, CDCl3): d 4.83
(1H, d, J = 6.8 Hz), 4.76 (1H, d, J = 6.8 Hz), 4.20–4.10 (2H, m), 4.05 (1H, dd, J = 13
and 4.0 Hz), 3.88 (1H, d, J = 13 Hz), 3.81–3.74 (2H, m), 3.56 (1H, d, J = 4.8 Hz),
3.48 (1H, dd, J = 4.4 and 3.6 Hz), 3.45 (3H, s), 2.73 (1H, dd, J = 15 and 2.8 Hz),
2.39 (1H, dd, J = 15 and 7.2 Hz), 1.25 (3H, t, J = 7.2 Hz); 13C NMR (100 MHz,
CDCl3): d 170.87 (s), 96.43 (t), 75.15 (d), 69.95 (d), 64.71 (t), 60.49 (t), 55.67 (d),
52.40 (d), 55.05 (q), 37.35 (t), 14.10 (q); HRMS (ESI) m/z calcd for C11H18O6Na
[M+Na]+ 269.1001, found 269.1004. Compound 20: Colorless oil. IR (neat)
cmÀ1: 3576, 2960, 2255, 2171, 1730, 1250, 1107, 1027, 844; a2D7 +39.02 (c 0.56,
CHCl3); 1H NMR (400 MHz, CDCl3): d 4.75 (1H, d, J = 6.8 Hz), 4.69 (1H, d,
J = 6.8 Hz), 4.22–4.12 (3H, m), 4.07 (1H, dt, J = 8.8 and 3.6 Hz), 3.89 (1H, dd,
J = 11 and 2.8 Hz), 3.72 (2H, dd, J = 9.2 and 2.8 Hz), 3.43 (3H, s), 2.85 (1H, m),
2.71 (1H, dd, J = 15 and 4.0 Hz), 2.54 (1H, br s), 2.50 (1H, dd, J = 15 and 8.8 Hz),
1.27 (3H, t, J = 7.2 Hz), 0.15 (9H, s); 13C NMR (100 MHz, CDCl3): d 171.31 (s),
104.49 (d), 96.26 (t), 87.80 (d), 75.76 (d), 71.45 (d), 68.23 (d), 64.77 (t), 60.57
(t), 56.24 (q), 37.51 (t), 35.21 (d), 14.18 (q), 0.00 (t) Â 3; HRMS (ESI) m/z calcd
for C16H28O6NaSi [M+Na]+ 367.1553, found 367.1566.
Acknowledgments
We thank Dr. Isabelle Chataigner of the Université de Rouen for
technical assistance with high-pressure experiments and for help-
ful discussions. This work was supported financially in part by JSPS
Research Fellowship for Young Scientists (to F.Y.) (No. 19ꢀ6569)
and by a Grant-in-Aid for program for Promotion of Basic and Ap-
plied Researches for Innovations in Bio-oriented Industry.
19. (a) Yamaguchi, M.; Nobayashi, Y.; Hirao, I. Tetrahedron 1984, 45, 9265; (b)
Shindo, M.; Sugioka, T.; Shishido, K. Tetrahedron Lett. 2004, 49, 9265.
20. General procedure for the IMOM reaction under anionic conditions: To a solution
(0.05 M) of NaH (2.5 equiv) in CH2Cl2 was added the hydroxy enoate (1 equiv)
at 0 °C and was stirred at the same temperature for 2 h. The reaction mixture
was quenched with satd NaHCO3 (aq). The aqueous layer was extracted with
AcOEt, and the extract was washed with brine, dried over MgSO4, filtered, and
concentrated. The residue was purified through silica gel column
chromatography to give the cyclized product.
References and notes
1. (a) Shiozawa, H.; Kagasaki, T.; Kinoshita, T.; Haruyama, H.; Domon, H.; Utsui,
Y.; Kodama, K.; Takahashi, S. J. Antibiot. 1993, 46, 1834; (b) Shiozawa, H.;
Takahashi, S. J. Antibiot. 1994, 47, 851; (c) Shiozawa, H.; Kagasaki, T.; Torikawa,
A.; Tanaka, N.; Fujimoto, K.; Hata, T.; Furukawa, Y.; Takahashi, S. J. Antibiot.
1995, 48, 907.
2. (a) Ettinger, L.; Gäumann, E.; Hütter, R.; Keller-Schierlein, W.; Kardolfer, F.;
Neipp, L.; Prelog, V.; Zähner, H. Helv. Chim. Acta 1959, 42, 563; (b) Celmer, W.
D.; Solomons, I. A. J. Am. Chem. Soc. 1955, 77, 2861.
21. General procedure for the IMOM reaction under high-pressure conditions:
A
i
solution (0.05 M) of the hydroxy enoate (1 equiv) in a mixture of Pr2NEt and
the solvent (1:9) was allowed to stand under high pressure at room
temperature for 15–19 h. After reversion to atmospheric pressure, the
solvent was evaporated. The residue was purified through silica gel column
chromatography to give the cyclized product.
3. For a review, see: Class, Y. J.; DeShong, P. Chem. Rev. 1995, 95, 1843.
4. Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628.
5. For a review, see: Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045.