C-C coupling with aliphatic tertiary amines and/or with
acetylenes that are not arylethynes, we have searched for a
better method. Iron salts are inexpensive and benign to the
environment, especially when they do not require coordina-
tion to expensive or/and toxic ligands; they are now the
catalysts of choice.20 We are pleased to report the FeCl2
catalyzes the chemoselective oxidative C-C cross-coupling
of a large variety of tertiary amines and terminal alkynes,
using (t-BuO)2 as oxidant and no solvent.
Scheme 1. Oxidative Dealkylation of Tertiary Amines and
Quenching of Iminium Ion Intermediates with Nucleophiles
(Horner’s Mechanism)
With (t-BuO)2 as oxidant we found that Fe(acac)2, FeCl3,
Fe2(CO)9, Fe(CO)5, and FeCl2 (10 mol%) catalyze the
coupling reaction (24 h, 100 °C, Ar atm) giving 9aa in 12%,
56%, 12%, 13%, and 69% yield, respectively (4 mmol of 7a,
2 mmol of 8a, no solvent) (Table 1). Fe(OAc)2, Fe(ClO4)2, and
Fe(acac)3 did not catalyze the reaction. Interestingly, we found
that the yield of the FeCl2/(t-BuO)2-induced coupling reaction
was higher under air atmosphere (88%) than under Ar atmo-
sphere (69%). We cannot explain yet this observation. Under
1 atm of pure O2, decrease of yield (65%) was observed,
probably because of the known4,5 O2 quenching of short-lived
R-aminoalkyl radical of type 3 (Scheme 1).
In the presence of 1 equiv of H2O, the reaction was slower
and R-aminoether 4-Me-C6H4N(Me)CH2O-t-Bu (12, this
product could not be isolated; see below) was present in the
crude reaction mixture after 24 h at 100 °C. More water
inhibited the reaction completely, thus demonstrating that
anhydrous conditions must be chosen for success. The
reaction occurs already at 20 °C but in much lower yield
(7%, 24 h, no solvent).
We then explored the scope of our reaction conditions
(Table 2) and found that various aryl substituted N,N-
dimethylanilines (7) can be coupled with arylacetylenes
(8a,b,c), heteroarylacetylenes (8d,e), and nonaromatic
terminal alkynes (8f-k) including a conjugated enyne
(8h), a silylethyne (8g), ethyl propynoate (8i), 5-chloro-
pent-1-yne (8j), and phenyl propargyl ether (8k). Oxidative
coupling of bromoaniline 7d is particularly interesting as
MdO species oxidize the amines as X-O•.8 In 1988, Murahashi
et al. found that ruthenium salts and complexes catalyze the
oxidation of tertiary amines with t-BuOOH to give the corre-
sponding R-aminoalkyl tert-butyl ethers (5, X ) O-t-Bu) that
are hydrolyzed into 6 + R′CHO.9 Nucleophiles other than H2O
can be reacted with the immonium intermediates 4, including
carbon nucleophiles such as allylsilanes and HCN.10,11 Interest-
ingly, with RuCl3 catalyst the oxidant can be H2O2 or O2.10
In 1989, Miura and co-workers reported the O2 oxidation of
N,N-dimethylaniline (60 °C, MeCN) catalyzed by iron salts
to give N-methylformanilide and several other products
arising from the reactions of radical intermediates of type
3.12 Using CuCl2/O2 and terminal alkynes, they managed to
obtain (27-43% yield) the corresponding products of oxida-
tive C-C cross-coupling, N-methyl-N-propargylanilines.13
This was an important discovery as propargyl amines are
key synthetic intermediates in the preparation of a large
variety of biologically active compounds.14 More recently,
Li and co-workers, using t-BuOOH as oxidant and CuBr as
catalyst, have realized better yielding oxidative coupling of
tertiary amines with arylacetylenes,15 nitromethane,16 in-
doles,17 malonates, naphthols, and other carbon nucleo-
philes.18 An alternative method using NBS as oxidant and
CuBr as catalyst has been proposed by Fu and co-workers.19
As these methods give only moderate yields of oxidative
(14) See e. g.: (a) Likhar, P. R.; Subhas, M. S.; Roy, S.; Kantam, M. L.;
Sridhar, B.; Seth, R. K.; Biswas, S. Org. Biomol. Chem. 2009, 7, 85–93.
(b) Zhou, Y.; Beeler, A. B.; Cho, S.; Wang, Y.; Franzblau, S. G.; Snyder,
J. K. J. Comb. Chem. 2008, 10, 534–540. (c) Boulton, A. A.; Davis, B. A.;
Durden, D. A.; Dyck, L. E.; Juorio, A. V.; Li, X. M.; Paterson, I. A.; Yu,
P. H. Drug DeV. Res. 1997, 42, 150–156. (d) Miura, M.; Enna, M.; Okuro,
K.; Nomura, M. J. Org. Chem. 1995, 60, 4999–5004.
(6) (a) Galliani, G.; Rindone, B.; Marchesini, A. J. Chem. Soc., Perkin
Trans. 1 1978, 456–460. (b) Galliani, G.; Rindone, B. J. Chem. Soc., Perkin
Trans. 2 1980, 1–3.
(7) (a) Guengerich, F. P.; MacDonald, T. L. Acc. Chem. Res. 1984, 17,
9–16. (b) Baciocchi, E.; Gerini, M. F.; Lapi, A. Chem. Commun. 2002,
946–947. (c) Baciocchi, E.; Gerini, M. F.; Lanzalunga, O.; Lapi, A.; Lo
Piparo, M. G.; Mancinelli, S. Eur. J. Org. Chem. 2001, 230, 5–2310.
(8) (a) Cytochrome P-450, 2nd ed.; Plenum: New York, 1995; (b)
Cuppoletti, A.; Galli, C.; Gentili, P.; Petride, H. J. Phys. Org. Chem. 2002,
15, 672–675. (c) Urlacher, V. B.; Bell, S. G.; Wong, L. L. Mod. Biooxid.
2007, 99–122. (d) Chiavarino, B.; Cipollini, R.; Crestoni, M. E.; Fornarini,
S.; Lanucara, F.; Lapi, A. J. Am. Chem. Soc. 2008, 130, 3208–3217.
(9) Murahashi, S.; Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988,
110, 8256–8258.
(15) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810–11811.
(16) (a) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672–3673.
See also the CuBr/O2-promoted oxidative R-(nitroalkylation) of tertiary
amines: (b) Basle´, O.; Li, C. J. Green Chem. 2007, 9, 1047–1050.
(17) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 6968–6969.
(18) Li, Z. P.; Bohle, D. S.; Li, C. J. Proc. Nat. Acad. Sci. U.S.A. 2006,
103, 8928–8933.
(19) Niu, M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2008,
73, 3961–3963.
(10) Murahashi, S. I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem.
Soc. 2008, 130, 11005–11012, and references therein
.
(20) (a) Fu¨rstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.;
Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773–8787, and references
therein. (b) Sherry, B. D.; Fu¨rstner, A. Acc. Chem. Res. 2008, 41, 1500–
1511. (c) Plietker, B. Iron Catalysis in Organic Chemistry; Wiley-VCH:
Weinheim, 2008. (d) Bauer, E. B. Curr. Org. Chem. 2008, 12, 1341–1369.
(e) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem.
Soc. 2008, 130, 5858–5859. (f) Enthaler, S.; Junge, K.; Beller, M. Angew.
Chem., Int. Ed. 2008, 47, 3317–3321. (g) Carril, M.; Correa, A.; Bolm, C.
Angew. Chem., Int. Ed. 2008, 47, 4862–4865. (h) Volla, C. M. R.; Vogel,
P. Angew. Chem., Int. Ed. 2008, 47, 1305–1307. (i) Loska, R.; Volla,
C. M. R. AdV. Synth. Catal 2008, 350, 2859–2864. (j) Reymond, S.; Ferrie´,
L.; Guerinot, A.; Capdevielle, P.; Cossy, J. Pure Appl. Chem. 2008, 80,
1683–1691. (k) Volla, C. M. R.; Vogel, P. Tetrahedron Lett. 2008, 49,
5961–5964.
(11) For other metal-catalyzed R-C-H activation of tertiary amines, see:
(a) Wilson, R. B., Jr.; Laine, R. M. J. Am. Chem. Soc. 1985, 107, 361–369.
(b) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai,
S. J. Am. Chem. Soc. 2001, 123, 10935–10941. (c) DeBoef, B.; Pastine,
S. J.; Sames, D. J. Am. Chem. Soc. 2004, 126, 6556–6557. (d) Pastine,
S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220–
14221. (e) Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am.
Chem. Soc. 2006, 128, 5648–5649
.
(12) (a) Murata, S.; Miura, M.; Nomura, M. J. Org. Chem. 1989, 54,
4700–4702. (b) Murata, S.; Miura, M.; Nomura, M. J. Chem. Soc., Chem.
Commun. 1989, 116–118.
(13) Murata, S.; Teramoto, K.; Miura, M.; Nomura, M. J. Chem. Res.,
Synop. 1993, 434.
1702
Org. Lett., Vol. 11, No. 8, 2009