3.6 A. The conductance pathway of the ClC protein chloride
transporter is thought to pass chloride ions in a chain bridged
by dynamic (disordered) water molecules.19
4 C. Goto, M. Yamamura, A. Satake and Y. Kobuke, J. Am. Chem.
Soc., 2001, 123, 12152–12159.
5 (a) Y. Kobuke, K. Ueda and M. Sokabe, J. Am. Chem. Soc., 1992,
114, 7618–7622; (b) T. M. Fyles, C. Hu and R. Knoy, Org. Lett.,
2001, 3, 1335–1337; (c) P. Bandyopadhyay, V. Janout, L. H. Zhang
and S. L. Regen, J. Am. Chem. Soc., 2001, 123, 7691–7696;
(d) L. M. Cameron, T. M. Fyles and C. W. Hu, J. Org. Chem.,
2002, 67, 1548–1553; (e) A. P. Davis, Molecules, 2007, 12,
2106–2122; (f) L. Ma, M. Melegari, M. Colombini and
J. T. Davis, J. Am. Chem. Soc., 2008, 130, 2938–2939.
6 (a) X. Li, B. Shen, X.-Q. Yao and D. Yang, J. Am. Chem. Soc.,
2007, 129, 7264–7265; (b) S. D. Whitmarsh, A. P. Redmond,
V. Sgarlata and A. P. Davis, Chem. Commun., 2008, 3669–3671.
7 (a) R. Pajewski, R. Ferdani, J. Pajewska, N. Djedovic,
P. H. Schlesinger and G. W. Gokel, Org. Biomol. Chem., 2005, 3,
619–625; (b) L. You and G. W. Gokel, Chem.–Eur. J., 2008, 14,
5861–5870.
8 T. M. Fyles, R. Knoy, K. Mullen and M. Sieffert, Langmuir, 2001,
17, 6669–6674.
9 D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis,
S. L. Cohen, B. T. Chait and R. MacKinnon, Science, 1998, 280,
69–77.
10 L. A. Weiss, N. Sakai, B. Ghebremariam, C. Ni and S. Matile,
J. Am. Chem. Soc., 1997, 119, 12142–12149.
11 C. L. Murray, H. Shabany and G. W. Gokel, Chem. Commun.,
2000, 2371–2372.
This work demonstrates several important principles. First,
exceptionally simple monomers form pores that are functional
channels. Compound 1 was designed to be long enough to
span the bilayer. It forms oligomeric pores that exhibit classic
open–close behavior, although the aggregation state and pore
size appear to increase over time. Nevertheless, this extremely
simple, membrane-length compound is both functional and
selective for K+ over Clꢀ. These compounds were designed
to demonstrate that complex design criteria such as the
incorporation of, for example, crown ethers20 or guanine21
residues, while potentially beneficial, may not be required for
transport function. Compound 1 appears to fulfil the three
criteria noted in the beginning of this report, although detailed
evidence for bilayer conformation such as we reported for
hydraphiles20 is laborious to obtain. Our studies show that
compounds that were designed to incorporate elements
expected to impart specific properties should be compared
with much simpler analogs to confirm that the design element
is functioning as imagined.
12 1H-NMR (DMSO-d6): 1.31–1.61 (36H, m), 2.29–2.32 (4H, m),
3.46–3.63 (16H, m), 4.01 (4H, m), 4.95 (4H, s), 6.97–7.02 (8H, m),
7.20–7.31 (3H, m), 7.51–7.56 (8H, m), 7.96 (1H, s), 9.88 (2H, s).
13C-NMR: 25.20, 25.27, 36.42, 47.92, 49.49, 58.64, 58.78, 65.66,
67.51, 110.19, 113.97, 114.85, 114.96, 127.03, 127.256, 128.68
132.24, 132.53, 139.60, 157.43, 157.83, 167.71, 171.36. FAB-MS
for silyl protected 1, m/z calcd.: (M + Na) 1609.9912, found:
1609.9950.
13 M. E. Weber, P. H. Schlesinger and G. W. Gokel, J. Am. Chem.
Soc., 2005, 127, 636–642.
14 E. E. Ambroggio, F. Separovic, J. H. Bowie, G. D. Fidelio and
L. A. Bagatolli, Biophys. J., 2005, 89, 1874–1881.
15 I. Segel, in Enzyme Kinetics. Behavior and Analysis of Rapid
Equilibrium and Steady-State Enzyme Systems, John Wiley &
Sons, New York, 1975 (Wiley Classics Edition, 1993),
pp. 371–375.
16 R. Ferdani, R. Li, R. Pajewski, J. Pajewska, R. K. Winter and
G. W. Gokel, Org. Biomol. Chem., 2007, 5, 2423–2432.
17 (a) N. Sakai, Y. Kamikawa, M. Nishii, T. Matsuoka, T. Kato and
S. Matile, J. Am. Chem. Soc., 2006, 128, 2218–2219;
(b) O. S. Smart, J. Breed, G. R. Smith and M. S. P. Sansom,
Biophys. J., 1997, 72, 1109–1126; (c) B. Hille, in Ionic Channels of
Excitable Membranes, Sinauer, Sunderland, MA, 2nd edn, 1992,
ch. 11, pp. 291–298.
We thank the NIH for support of this work through grant
GM 36262.
Notes and references
1 (a) I. Tabushi, Y. Kuroda and K. Yokota, Tetrahedron Lett., 1982,
23, 4601–4604; (b) V. E. Carmichael, P. J. Dutton, T. M. Fyles,
T. D. James, J. A. Swan and M. Zojaji, J. Am. Chem. Soc., 1989,
111, 767–769; (c) A. Nakano, Q. Xie, J. V. Mallen, L. Echegoyen
and G. W. Gokel, J. Am. Chem. Soc., 1990, 112, 1287–1289;
(d) J. Canceill, L. Jullien, L. Lacombe and J.-M. Lehn, Helv.
Chim. Acta, 1992, 75, 791–812.
2 (a) G. W. Gokel and A. Mukhopadhyay, Chem. Soc. Rev., 2001,
30, 274–286; (b) G. W. Gokel, P. H. Schlesinger, N. K. Djedovic,
R. Ferdani, E. C. Harder, J. Hu, W. M. Leevy, J. Pajewska,
R. Pajewski and M. E. Weber, Bioorg. Med. Chem., 2004, 12,
1291–1304; (c) T. M. Fyles, Chem. Soc. Rev., 2007, 36, 335–347;
(d) N. Sakai, J. Mareda and S. Matile, Mol. BioSyst., 2007, 3,
658–666; (e) A. L. Sisson, M. R. Shah, S. Bhosale and S. Matile,
Chem. Soc. Rev., 2006, 35, 1269–1286.
3 (a) S. Fernandez-Lopez, H.-S. Kim, E. C. Choi, M. Delgado,
J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long,
D. A. Weinberger, K. M. Wilcoxen and M. R. Ghadiri, Nature,
2001, 412, 452–455; (b) E. Biron, F. Otis, J. C. Meillon, M. Robitaille,
J. Lamothe, P. Van Hove, M. E. Cormier and N. Voyer, Bioorg.
Med. Chem., 2004, 12, 1279–1290; (c) W. M. Leevy, S. T. Gammon,
T. Levchenko, D. D. Daranciang, O. Murillo, V. Torchilin,
D. Piwnica-Worms, J. E. Huettner and G. W. Gokel, Org. Biomol.
Chem., 2005, 3, 3544–3550.
18 J. Zhou, X. Lu, Y. Wang and J. Shi, Fluid Phase Equilib., 2002,
194–197, 257–270.
19 R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait and
R. MacKinnon, Nature, 2002, 415, 287–294.
20 G. W. Gokel, Chem. Commun., 2000, 1–9.
21 L. Ma, M. Melegari, M. Colombini and J. T. Davis, J. Am. Chem.
Soc., 2008, 130, 2938–2939.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 911–913 | 913