10.1002/chem.202101459
Chemistry - A European Journal
FULL PAPER
Ethyl
2-(4-bromo-1-((tert-butyldimethylsilyl)oxy)-3-phenyl-1H-
Keywords: Synthetic methods • Domino reactions •
Rearrangement • Polycycles • Fluorescence
isochromen-1-yl)acetate (5a-Br): According to the general procedure,
this compound was obtained in 89% yield (1.35 g, 2.68 mmol) by the
reaction of bromolactone 8a-Br (904 mg, 3.00 mmol) with KSA (968 mg,
4.78 mmol) in the presence of zwitterion catalyst A (15.9 mg, 30.3 mol)
in CH2Cl2 (15 mL). The KSA was added over 30 min at 0 °C, then the
mixture was additionally stirred for 30 min at the same temperature.
Isolation of the product was achieved by column chromatography on silica
gel (hexane/EtOAc = 20 : 1). Colourless crystals (from hexane); IR (ATR)
2954, 2926, 2856, 1731, 1600, 1334, 1226, 1193, 1150, 1013, 836, 781,
753, 694 cm–1; 1H NMR (400 MHz, CDCl3) –0.15 (3H, s), –0.09 (3H, s),
0.89 (9H, s), 1.15 (3H, t, J = 7.2 Hz), 3.02 (1H, d, J = 13.6 Hz), 3.17 (1H,
d, J = 13.6 Hz), 4.00-4.14 (2H, m), 7.33 (1H, td, J = 7.6, 1.2 Hz), 7.38-7.46
(5H, m), 7.60 (1H, dd, J = 7.6, 1.2 Hz), 7.85-7.90 (2H, m); 13C NMR (100
MHz, CDCl3) –3.7, –3.3, 14.0, 18.0, 25.7, 46.9, 60.6, 98.3, 100.9, 124.2,
124.9, 127.7, 127.8, 129.1, 129.3, 129.9, 130.0, 132.5, 134.4, 148.5,
168.4; HRMS (ESI-TOF) calcd for C25H31BrNaO4Si [M+Na]+, 525.1073;
found, 525.1071. Anal. Calcd for C25H31BrO4Si: C, 59.64; H, 6.21. Found:
C, 59.64; H, 6.20.
[1]
[2]
J. Staunton, K. J. Weissman, Nat. Prod. Rep., 2001, 18, 380.
J. Rohr, C. Hertweck, Type II PKS, in Comprehensive Natural Products
II, Eds. H.-W. Liu and L. Mander, Elsevier: Amsterdam, 2010, Vol .1, pp.
227–303.
[3]
For reviews, see: a) V. C. Fäseke, F. C. Raps, C. Sparr, Angew. Chem.
Int. Ed., 2020, 59, 6975; Angew. Chem., 2020, 132, 7039; b) G. Genta-
Jouve, S. Antoniotti, O. P. Thomas, Polyketide Assembly Mimics and
Biomimetic Access to Aromatic Rings, in Biomimetic Organic Synthesis,
Eds. E. Poupon and B. Nay, Wiley-VCH, 2011, Vol. 1, pp. 469–502.
F. Malpartida, D. A. Hopwood, Nature, 1984, 309, 462.
[4]
[5]
For selected examples, see: a) M. Harris, P. J. Wittek, J. Am. Chem. Soc.,
1975, 97, 3270; b) M. Harris, A. D. Webb, C. M. Harris, P. J. Wittek, T.
P. Murray, J. Am. Chem. Soc., 1976, 98, 6065; c) M. Yamaguchi, K.
Shibato, I. Hiro, Chem. Lett., 1985, 14, 1145; d) M. Yamaguchi, K.
Hasebe, H. Higashi, M. Uchida, A. Irie, T. Minami, J. Org. Chem., 1990,
55, 1611; e) T. N. Barrett, A. G. M. Barrett, J. Am. Chem. Soc., 2014,
136, 17013.
General procedure for the ring-rearrangement reaction: To a solution
of lactol silyl ether 5 (0.2-0.5 mmol) in AcOH (0.1 mol L–1), NaOAc (20
equiv) was added. After being stirred for 2.5-11 h at 70 °C, the reaction
mixture was directly concentrated under reduced pressure. The resulting
residue was dissolved in water (50 mL) and extracted with EtOAc (30 mL
x 3). The combined organic layer was washed with brine (30 mL) and
evaporated. The resulting residue was purified by column chromatography
on neutral silica gel eluting with hexane/EtOAc mixtures to give the desired
4-aryl-1,3-dihydroxy-2-naphthoate 6.
[6]
[7]
a) Review, see: K. Krohn, Eur. J. Org. Chem., 2002, 1351; b) G.
Bringmann, Angew. Chem. Int. Ed. Engl., 1982, 21, 200; c) A. Link, C.
Sparr, Angew. Chem. Int. Ed., 2014, 53, 5458; Angew. Chem., 2014, 126,
5562; d) R. M. Witzig, V. C. Fäseke, D. Häussinger, C. Sparr, Nat. Catal.,
2019, 2, 925.
H. Yanai, N. Ishii, T. Matsumoto, T. Taguchi, Asian J. Org. Chem., 2013,
2, 989.
[8]
[9]
H. Yanai, N. Ishii, T. Matsumoto, Chem. Commun., 2016, 52, 7974.
M. Garcia-Castro, S. Zimmermann, M. G. Sankar, K. Kumar, Angew.
Chem. Int. Ed., 2016, 55, 7586; Angew. Chem., 2016, 128, 7712; (b) A.
Garcia, B. S. Drown, P. J. Hergenrother, Org. Lett., 2016, 18, 4852; (c)
R. J. Rafferty, R. W. Hicklin, K. A. Maloof, P. J. Hergenrother, Angew.
Chem. Int. Ed., 2014, 53, 220; Angew. Chem., 2014, 126, 224.
Ethyl 1,3-dihydroxy-4-phenyl-2-naphthoate (6a): According to the
general procedure, this compound[15b] was obtained in 93% yield (71.2 mg,
0.231 mmol) by the reaction of lactol silyl ether 5a-Br (125 mg, 0.248
mmol) in AcOH (2.5 mL) containing NaOAc (412 mg, 5.02 mmol) for 4 h at
70 °C and the following column chromatography on silica gel
(hexane/EtOAc = 20 : 1). The molecular structure was also confirmed by
single crystal X-ray structural analysis. Yellow crystals (from Et2O); Mp.
123-124 °C; IR (ATR) 3407, 2923, 2853, 1656, 1635, 1400, 1297, 1232,
[10] Selected examples for synthesis of 1,2,3,4-tetrasubstitued naphthalenes,
see: a) J.-Y. Wang, P. Zhou, G. Li, W.-J. Hao, S.-J. Tu, B. Jiang, Org.
Lett., 2017, 19, 6682; b) G. Naresh, R. Kant, T. Narender, Org. Lett.,
2015, 17, 3446; c) B. S. Kale, R.-S. Liu, Org. Lett., 2019, 21, 8434; d) T.
Hamura, M. Miyamoto, T. Matsumoto, K. Suzuki, Org. Lett., 2002, 4, 229.
[11] Recent synthesis of 1,2,3,4-tetrasubstitued carbazoles, see: a) S. Singh,
R. Samineni, S. Pabbaraja, G. Mehta, Org. Lett., 2019, 21, 3372; b) T. N.
Poudel, Y. R. Lee, Chem. Sci., 2015, 6, 7028.
806, 771, 758, 697, 572 cm–1 1H NMR (400 MHz, CDCl3) 1.51 (3H, t, J
;
= 7.2 Hz), 4.63 (2H, q, J = 7.2 Hz), 7.32 (1H, ddd, J = 8.4, 6.4, 1.2 Hz),
7.34-7.39 (3H, m), 7.40-7.47 (2H, m), 7.49-7.55 (2H, m), 8.35 (1H, d, J =
8.4 Hz), 9.28 (1H, brs, OH), 11.61 (1H, brs, OH); 13C NMR (100 MHz,
CDCl3) 14.2, 63.2, 97.0, 114.8, 119.5, 123.0, 124.1, 124.5, 127.2, 128.4,
130.4, 131.2, 136.0, 137.1, 150.1, 161.3, 170.3; HRMS (ESI-TOF) calcd
for C19H17O4 [M+H]+, 309.1127; found, 309.1118. Anal. Calcd for
C19H16O4: C, 74.01; H, 5.23. Found: C, 73.75; H, 5.23.
[12] a) L.-Y. Chin, C.-Y. Lee, Y.-H. Lo, M.-J. Wu, J. Chin. Chem. Soc., 2008,
644; b) S. Roy, S. Roy, B. Neuenswander, D. Hill, R. C. Larock, J. Comb.
Chem., 2009, 11, 1128.
[13] H. Yanai, T. Yoshino, M. Fujita, H. Fukaya, A. Kotani, F. Kusu, T. Taguchi,
Angew. Chem. Int. Ed., 2013, 52, 1560; Angew. Chem., 2013, 125, 1600.
[14] H. Yanai, T. Taguchi, Chem. Commun., 2012, 48, 8967.
One-pot synthesis of 6a: To a solution of 4-bromo-3-phenyl-1H-
isochromen-1-one 8a-Br (151 mg, 0.501 mmol) and zwitterion A (2.7 mg,
5.1 mol) in CH2Cl2 (2.2 mL), a solution of KSA (162 mg, 0.801 mmol) in
CH2Cl2 (0.3 mL) was slowly added. After being stirred for 0.5 h at 0 °C, the
reaction mixture was evaporated. Thus obtained residue was dissolved in
AcOH (5.0 mL) and treated with NaOAc (820 mg, 10.0 mmol) for 4 h at
70 °C. After extractive workup and evaporation, the crude material was
purified by column chromatography on silica gel (hexane/EtOAc = 15 : 1)
to give the desired naphthalene 6a in 95% yield (146 mg, 0.474 mmol)
over two steps.
[15] a) K. Meyer, H. S. Bloch, Org. Synth. 1945, 25, 73; b) J. Nieuwenhuis, J.
F. Arens, Rec. Trav. Chem. Pays Bas, 1958, 77, 1153; c) E. M. O'Brien,
B. J. Morgan, M. C. Kozlowski, Angew. Chem. Int. Ed., 2008, 47, 6877;
Angew. Chem., 2008, 120, 6983; d) G. Wang, Y. He, J. Sun, D. Das, M.
Hu, J. Huang, D. Ruhrmund, L. Hooi, S. Misialek, P. T. R. Rajagopalan,
A. Stoycheva, B. O. Buckman, K. Kossen, S. D. Seiwert, L. Beigelman,
Bioorg. Med. Chem. Lett., 2009, 19, 4476.
[16] For reviews, see: a) S.-H. Wang, Y.-Q. Tu, M. Tang, The Semipinacol
Rearrangement, in Comprehensive Organic Synthesis II, P. Knochel and
G. A Molander, Eds., Elsevier: Amsterdam, 2014, Vol. 3, pp. 795–852;
b) Z.-L. Song, C.-A. Fan, Y.-Q. Tu, Chem. Rev., 2011, 111, 7523.
[17] Deposition Numbers 2011888 (6a), 2011882 (6d), 2011887 (6f),
2011881 (6i), 2011885 (6j), 2011883 (6k), 2011886 (6m), and 2011884
(6p) contain the supplementary crystallographic data for this paper.
These data are provided free of charge by the joint Cambridge
Crystallographic Data Centre and Fachinformationszentrum Karlsruhe
Acknowledgements
Financial supports by KAKENHI (20K06947), Japan, and the
research cluster Labex EMC3 (energy materials and clean
combustion center) and Région Normandie, France, are gratefully
acknowledged.
[18] a) The Quantum Theory of Atoms in Molecules (Eds.: C. F. Matta, R. J.
Boyd), Wiley-VCH, Weinheim, 2007; b) R. F. W. Bader, Atoms in
Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.
7
This article is protected by copyright. All rights reserved.