1624
H. Zhang et al. / Tetrahedron Letters 50 (2009) 1622–1624
[Yb]
[Yb]
[Yb]
H
H
O
O
O
HC
O
O
O
H2O
YbCl3
CH
Ph
Ph
PhCHO
Ph
+
PhCHO
[Yb]
O
[Yb]
H2O
Ph
Ph
Ph
Ph
Ph
A
NH
NH2
NH
CO(NH2)2
O
O
N
H
O
H2N
O
O
H2N
Ph
Ph
Ph
H
[Yb]
[Yb]
B
Scheme 2.
Inorder toexaminethescopeandgeneralityof thisprocedure, we
extended the methodology to different aromatic aldehydes. The re-
sults are presented in Table 3. All the reactions, consisting of those
involving ortho-, meta-, and para-substituted benzaldehydes, pro-
ceeded smoothly and afforded the corresponding benzylidene hete-
robicyclic pyrimidinones in moderate to high yields. Electronic
effects can be observed. The electron-donating group(EDG)-substi-
tuted benzaldehydes (para-substituted, entries 3 and 5) required
prolonged reaction time to give the yields close to those of weaker
Acknowledgments
The authors thank the National Natural Science Foundation of
China (20872106, 20632040), State Key Laboratory of Organome-
tallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences for financial support.
Supplementary data
electron-withdrawing group(EWG)-substituted ones (entries
8
Supplementary data associated with this article can be found, in
and 9), while stronger EWG-substituted ones (entries 12, 15, and
16) gave evidently increasing yields. ortho-Substituted benzalde-
hydes (entries 4, 7, 11, and 14), whether the substituent is EDG or
EWG, afforded the corresponding pyrimidinones in relatively lower
yields, indicating an obvious steric effect. Thiourea exhibited behav-
ior similar to that of urea.
References and notes
1. Atwal, K. S.; Rovnyak, G. C.; O0Reilly, B. C.; Schwartz, J. J. Org. Chem. 1989, 54,
5898–5907.
2. Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53, 2803–2816.
3. El-Subbagh, H. I.; Abu-Zaid, S. M.; Mahran, M. A.; Badria, F. A.; Al-Obaid, A. M. J.
Med. Chem. 2000, 43, 2915–2921.
4. (a) Lorand, T.; Deli, J.; Szabo, D.; Foeldesi, A.; Zschunke, A. Pharmazie 1985, 40,
536–539; (b) Elgemeie, G. E. H.; Attia, A. M. E.; Alkabai, S. S. Nucleos. Nucleot.
Nucl. 2000, 19, 723–734.
5. (a) Hammam, A. E. G.; Sharaf, M. A.; El-Hafez, N. A. A. Indian J. Chem., Sect. B
2001, 40, 213–221; (b) Al-Omran, F.; Al-Awadi, N. J. Chem. Res. 1995, 10, 2201–
2220; (c) Al-Omar, M. A.; Youssef, K. M.; El-Sherbeny, M. A.; Awadalla, S. A. A.;
El-Subbagh, H. I. Arch. Pharm. (Weinheim Ger.) 2005, 338, 175–180; (d) Ali, M. I.;
Hammam, A. E. G.; Youssef, N. M. J. Chem. Eng. Data 1981, 26, 214–215.
6. Zhu, Y.; Huang, S.; Pan, Y. Eur. J. Org. Chem. 2005, 2354–2367.
7. D’Souza, D. M.; Muller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095–1108.
8. (a) Collin, J.; Giuseppone, N.; Van de Weghe, P. Coord. Chem. Rev. 1998, 178–180,
117–144; (b) Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002, 102, 2161–2185;
(c) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102, 2187–2209; (d) Inanaga,
J.; Furuno, H.; Hayano, T. Chem. Rev. 2002, 102, 2211–2225; (e) Kobayashi, S.;
Sugiura, M.; Kitagawa, H.; Lam, W. W. L. Chem. Rev. 2002, 102, 2227–2302; (f)
Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686; (g) Shibasaki, M.;
Matsunaga, S. Chem. Soc. Rev. 2006, 35, 269–279.
The mechanism of the Biginelli reaction established by Kappe10
proposed that the key step in this cyclocondensation process
should involve the formation of an N-acyliminium ion intermedi-
ate or a Lewis acid stabilized imine intermediate from the aldehyde
and urea precursors under acid-catalyzed conditions. However, the
byproduct isolated from the crude product of our model reaction,
which was detected as
a,
a0-dibenzylidene cyclopentanone A and
should be produced from benzaldehyde and cyclopentanone, sug-
gests another hypothesis. The first step of the present reaction is
probably a Lewis acid-catalyzed cross-aldol condensation of alde-
hyde with ketone to produce A, which is similar to the Yb(OTf)3-
catalyzed same reaction described by Wang.11 Then the Michael
addition of urea to A leads to ureide B, which subsequently elimi-
nates water and cyclizes to form pyrimidinone (Scheme 2).
In conclusion, we describe here an efficient method for the syn-
thesis of fused pyrimidinone by YbCl3-catalyzed Biginelli-type
reaction of aromatic aldehyde, cyclopentanone, and urea or thio-
urea under solvent-free conditions. The reaction presented here
has several advantages: it is clean, one-pot, and can be handled
easily. These environmentally friendly features make the catalytic
procedure a practically and environmentally acceptable method
for the synthesis of pyrimidinones.
9. (a) Xu, F.; Luo, Y.; Deng, M.; Shen, Q. Eur. J. Org. Chem. 2003, 4728–4730; (b)
Zhou, Z.; Xu, F.; Han, X.; Zhou, J.; Shen, Q. Eur. J. Org. Chem. 2007, 5265–5269;
(c) Han, X.; Xu, F.; Luo, Y.; Shen, Q. Eur. J. Org. Chem. 2005, 1500–1503.
10. (a) Kappe, C. O. J. Org. Chem. 1997, 62, 7201–7204; (b) Kappe, C. O. Acc. Chem.
Res. 2000, 33, 879–888.
11. Wang, L.; Sheng, J.; Tian, H.; Han, J.; Fan, Z.; Qian, C. Synthesis 2004, 18, 3060–
3064.