1204
A. Gagnon et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1199–1205
against the DM-RT for many heterocyclic linkers would therefore
be explained by the lack of an adequate H-bond acceptor.
In conclusion, the role of the tetrazolyl group in the binding of
the thiotetrazole acetanilide inhibitors with the HIV-1 reverse
transcriptase has been studied through the design of different cyc-
lic and acyclic tetrazole replacements. We have demonstrated that
a simple Z alkene is capable of retaining most of the potency
against the WT-RT, supporting the hypothesis that the tetrazole
partially acts as an orienting scaffold. The exploration of numerous
heterocyclic linkers allowed the identification of potent inhibitors
of the WT-RT. A complete reversal of selectivity was observed for
the NH-pyrazolyl inhibitors, giving excellent potency against the
DM-RT associated with a complete loss of activity against the
WT-RT. The electrostatic potential study has demonstrated that
the tetrazole provides a strong negative potential located at the
edge of the heterocycle. Modeling studies of the tetrazolyl and
NH-pyrazolyl inhibitors suggested important interactions between
the heterocyclic linkers and residue 103, providing a rationale for
the potency observed against both RTs.
Acknowledgments
We are grateful to colleagues at Boehringer Ingelheim (Canada)
Ltd. for analytical support, biological evaluation and valuable help
during manuscript preparation.
References and notes
1. AIDS epidemic update, UNAIDS, World health organization, December 2007,
2. For a review on recent developments in the treatment of AIDS, see: Armbruster,
C. Anti-Infective Agents Med. Chem. 2008, 7, 201.
Figure 4. Electrostatic potential (ESP) of selected inhibitors calculated at the HF/6-
31G level of theory. Red represents a negative potential; white represents a
neutral potential; blue represents a positive potential.
**
3. For an excellent review on the HIV-RT, see: Castro, H. C.; Loureiro, N. I. V.;
Pujol-Luz, M.; Souza, A. M. T.; Albuquerque, M. G.; Santos, D. O.; Cabral, L. M.;
Frugulhetti, I. C.; Rodrigues, C. R. Curr. Med. Chem. 2006, 13, 313.
4. For a recent reference on the mechanism of NNRTIs, see: Sluis-Cremer, N.;
Tachedjian, G. Virus Res. 2008, 134, 147.
5. For excellent reviews on the current status of NNRTIs, see: (a) Martins, S.;
Ramos, M. J.; Fernandes, P. A. Curr. Med. Chem. 2008, 15, 1083; (b) Sweeney, Z.
K.; Klumpp, K. Curr. Opin. Drug Discov. Dev. 2008, 11, 458; (c) Sahlberg, C.; Zhou,
X.-X. Anti-Infective Agents Med. Chem. 2008, 7, 101.
6. Simoneau, B.; Thavonekham, B.; Landry, S.; O’Meara, J.; Yoakim, C.; Faucher, A. -
M. 2004 WO 2004/050643.
7. (a) Muraglia, E.; Kinzel, O. D.; Laufer, R.; Miller, M. D.; Moyer, G.; Munshi, V.;
Orvieto, F.; Palumbi, M. C.; Pescatore, G.; Rowley, M.; Williams, P. D.; Summa,
V. Bioorg. Med. Chem. Lett. 2006, 16, 2748; b Shaw-Reid, C. A.; Miller, M. D.;
Hazuda, D. J.; Ferrer, M.; Sur, S. M.; Summa, V.; Lyle, T. A.; Kinzel, O.; Pescatore,
G.; Muraglia, E.; Orvieto, F.; Williams, P. D. 2005 WO 2005/115147.
8. For a review on RT mutations, see: Martinez-Picado, J.; Martínez, M. A. Virus
Res. 2008, 134, 104.
9. For general reviews on resistance to current HIV therapies, see: (a) Shafer, R.
W.; Schapiro, J. M. AIDS Rev. 2008, 10, 67; (b) Perno, C.-F.; Moyle, G.;
Tsoukas, C.; Ratanasuwan, W.; Gatell, J.; Schechter, M. J. Med. Virol. 2008, 80,
565.
10. DeRoy, P.; Faucher, A. -M.; Gagnon, A.; Landry, S.; Morin, S.; O’Meara, J.;
Simoneau, B.; Thavonekham, B.; Yoakim, C. 2005 WO 2005/118575.
11. Gagnon, A.; Amad, M. H.; Bonneau, P. R.; Coulombe, R.; DeRoy, P. L.; Doyon, L.;
Duan, J.; Garneau, M.; Guse, I.; Jakalian, A.; Jolicoeur, E.; Landry, S.; Malenfant,
E.; Simoneau, B.; Yoakim, C. Bioorg. Med. Chem. Lett. 2007, 17, 4437.
12. O’Meara, J. A.; Jakalian, A.; LaPlante, S.; Bonneau, P. R.; Coulombe, R.; Faucher,
A.-M.; Guse, I.; Landry, S.; Racine, J.; Simoneau, B.; Thavonekham, B.; Yoakim, C.
Bioorg. Med. Chem. Lett. 2007, 17, 3362.
13. a Girardet, J. L.; Zhang, Z.; Hamatake, R.; Hernandez, M. A. De la Rosa; Gunic, E.;
Hong, Z.; Kim, H; Koh, Y. -h.; Nilar, S.; Shaw, S.; Yao, N. 2004 WO 2004/030611.;
(b) Wang, Z.; Wu, B.; Kuhen, K. L.; Bursulaya, B.; Nguyen, T. N.; Nguyen, D. G.;
He, Y. Bioorg. Med. Chem. Lett. 2006, 16, 4174; De La (c) Rosa, M.; Kim, H. W.;
Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.-h.; Korboukh, I.; Allan, M.; Zhang, W.;
Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S. A.; Hong, Z.; Zhang, Z.;
Girardet, J.-L. Bioorg. Med. Chem. Lett. 2006, 16, 4444; (d) Zhang, Z.; Xu, W.; Koh,
Y.-H.; Shim, J. H.; Girardet, J.-L.; Yeh, L.-T.; Hamatake, R. K.; Hong, Z. Antimicrob.
Agents Chemother. 2007, 51, 429.
Figure 5. Molecular model of 27 (yellow) and 40 (orange) in the allosteric site of
HIV-1 WT and K103N/Y181C RT.
of the heterocycle. In the case of the pyrazole 40, this interaction
would be replaced by an unfavorable (pyrazolyl)N–HÁÁ//ÁÁH-Csp
3
contact, resulting in a major loss of potency against the WT-RT.
In the case of the 103N mutant, the side chain of the asparagine
can accommodate a H-bond donor or H-bond acceptor by rotation
of the amide, resulting in a (tetrazole)NÁÁÁÁH2NCO103N for 27 or
(pyrazolyl)N–HÁÁÁÁO@C103N for 40. The poor potency observed
14. Zhan, P.; Liu, X.; Cao, Y.; Wang, Y.; Pannecouque, C.; De Clercq, E. Bioorg. Med.
Chem. Lett. 2008, 18, 5368.
15. IC50 values for WT and mutant RTs were obtained from
proximity assay using poly rC/biotin-dG15 and 3H-dGTP at 37ꢀC.
16. For compound 28, a 28-fold and 5-fold loss of potency was observed,
respectively, for K103N and Y181C single mutants, suggesting that the loss of
a scintillation
a