are frequent skeletons3 and synthetically versatile key intermedi-
ates4 for the preparation of many nitrogen-containing biologi-
cally active compounds such as ꢀ-lactams, oxotremorine
analogues, conformationally restricted peptides, isosteres, natural
products, and therapeutic drug molecules.3b,5 Classical methods
for the preparation of propargylamines have usually exploited
the relatively high acidity of a terminal acetylenic C-H bond
to form alkynylmetal reagents by reaction with strong bases
such as butyllithium,6a organomagnesium compounds,6b or
LDA7 in a separate step. Unfortunately, these reagents are
required in stoichiometric quantities, are highly moisture sensi-
tive, and require strictly controlled reaction conditions.
Indium-Catalyzed Highly Efficient
Three-Component Coupling of Aldehyde, Alkyne,
and Amine via C-H Bond Activation
Yicheng Zhang,† Pinhua Li,† Min Wang,† and Lei Wang*,†,‡
Department of Chemistry, Huaibei Coal Teachers College,
Huaibei, Anhui 235000, P. R. China, and State Key
Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences,
Shanghai 200032, P. R. China
In recent years, enormous progress has been made in ex-
panding the scope of the direct addition of alkynes to carbon-
nitrogen double bonds either from prepared imines or from
aldehydes and amines in one-pot procedure by several noble
transition-metal catalysts via C-H activation of terminal
alkynes. AgI salts,8 AuI/AuIII salts,2,9 AuIII-salen complexes,10
CuI salts,11 Ir complexes,12 Hg2Cl2,13 and Cu/RuII bimetallic
system14 have all been used for this reaction under homogeneous
conditions, where water is the only theoretical byproduct.
Recently, AuI, AgI, and CuI in ionic liquids and supported AuIII,
AgI, and CuI were successfully used to catalyze three-component
coupling reactions under heterogeneous reaction conditions with
recyclability and reusability of the transition-metal catalysts.15
ReceiVed March 6, 2009
In this paper, indium(III) chloride was found to be a highly
effective catalyst for the three-component coupling reactions
of aldehydes, alkynes, and amines (A3-coupling) via C-H
activation. The reactions could be applied to both aromatic
and aliphatic aldehydes and alkynes. Nearly quantitative
yields of the desired products were obtained in most cases.
No cocatalyst or activator is required, and water is the only
byproduct in the reactions. Furthermore, a tentative mech-
anism of the InCl3-catalyzed one-pot, three-component
coupling of aldehyde, alkyne, and amine is proposed.
(4) (a) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org. Chem. 1995,
60, 4999. (b) Jenmalm, A.; Berts, W.; Li, Y. L.; Luthman, K.; Csoregh, I.;
Hacksell, U. J. Org. Chem. 1994, 59, 1139.
(5) (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (b) Naota, T.;
Takaya, H.; Murahashi, S. I. Chem. ReV. 1998, 98, 2599.
(6) (a) Wakefield, B. J. Organolithium Methods in Organic Synthesis;
Academic Press: London, 1988; Chapter 3, p 32. (b) Wakefield, B. J.
Organomagnesium Methods in Organic Synthesis; Academic Press: London,
1995; Chapter 3, p 46.
(7) (a) Harada, T.; Fujiwara, T.; Iwazaki, K.; Oku, A. Org. Lett. 2000, 2,
1855. (b) Rosas, N.; Sharma, P.; Alvarez, C.; Gomez, E.; Gutierrez, Y.; Mendez,
M.; Toscano, R. A.; Maldonado, L. A. Tetrahedron Lett. 2003, 44, 8019. (c)
Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Synlett 2006, 1272.
(8) Wei, C.; Li, Z.; Li, C. J. Org. Lett. 2003, 5, 4473.
(9) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584.
Multicomponent coupling reactions (MCRs) are a powerful
synthetic tool to access complex structures from simple precur-
sors via a one-pot procedure, and in general, those reported
exhibit high atom economy and selectivity.1 Three-component
coupling of an aldehyde, an alkyne, and an amine (A3-coupling)
is one of the best examples of such a process, and this
transformation has received much attention in recent years.2 The
resultant propargylamines obtained from A3-coupling reactions
(10) Lo, V. K. Y.; Liu, Y.; Wong, M. K.; Che, C. M. Org. Lett. 2006, 8,
1529.
(11) (a) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Org. Lett.
2004, 6, 1001. (b) Syeda, H. Z. S.; Halder, R.; Karla, S. S.; Das, J.; Iqbal, J.
Tetrahedron Lett. 2002, 43, 6485. (c) Kabalka, G. W.; Wang, L.; Pagni, R. M.
Synlett 2001, 676. For enantioselective syntheses of propargylamines through
CuI-catalyzed one-pot, three-component coupling reactions of aldehydes, alkynes,
and amines, see: (d) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2002, 124, 5638. (e)
Wei, C.; Mague, J. T.; Li, C. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5749.
(f) Gommarman, N.; Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int.
Ed 2003, 42, 5763. (g) Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F. J.
Mol. Catal. A: Chem. 2006, 260, 128. (h) Gommermann, N.; Knochel, P.
Chem.sEur. J. 2006, 12, 4380. (i) Bisai, A.; Singh, V. K. Org. Lett. 2006, 8,
2405.
† Huaibei Coal Teachers College.
‡ Shanghai Institute of Organic Chemistry.
(1) (a) For multicomponent reactions, see: Multicomponent Reactions; Zhu,
J., Bienayme, H., Eds.; Wiley: Weinheim, 2005. (b) Armstrong, R. W.; Combs,
A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29,
123. (c) Ugi, I.; Domling, A.; Werner, B. J. Heterocycl. Chem. 2000, 37, 647.
(d) Weber, L.; Illgen, K.; Almstetter, M. Synlett 1999, 366. (e) Ugi, I.;
Steinbrueckner, C. Chem. Ber. 1961, 94, 2802. (f) Strecker, A. Ann. Chem. 1850,
75, 27. (g) Mannich, C.; Kosche, W. Arch. Pharm. 1912, 250, 647. (h) Hantzsch,
A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
(2) Wei, C.; Zhang, L.; Li, C. J. Synlett 2004, 1472, and references cited
therein.
(3) (a) Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J.
Org. Chem. 1995, 60, 1590. (b) Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.;
VanDuyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715.
(12) (a) Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319. (b) Sakaguchi,
S.; Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534. (c) Sakaguchi,
S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Chem. Commun 2004, 1638.
(13) Li, P.; Wang, L. Chin. J. Chem. 2005, 23, 1076.
(14) Li, C. J.; Wei, C. Chem. Commun. 2002, 3, 268.
(15) (a) Li, Z.; Wei, C.; Chen, L.; Varma, R. S.; Li, C. J. Tetrahedron Lett.
2004, 45, 2443. (b) Park, S. B.; Alper, H. Chem. Commun. 2005, 10, 1315. (c)
Choudary, B. M.; Sridhar, C.; Kantam, M. L.; Sreedhar, B. Tetrahedron Lett.
2004, 45, 7319. (d) Kantam, M. L.; Prakash, B. V.; Reddy, C. R. V.; Sreedhar,
B. Synlett 2005, 2329. (e) Reddy, K. M.; Babu, N. S.; Prasad, P. S. S.; Lingaiah,
N. Tetrahedron Lett. 2006, 47, 7563. (f) Zhang, X.; Corma, A. Angew. Chem.,
Int. Ed 2008, 47, 4358. (g) Li, P.; Wang, L. Tetrahedron 2007, 63, 5455. (h)
Wang, M.; Li, P.; Wang, L. Eur. J. Org. Chem. 2008, 2255.
4364 J. Org. Chem. 2009, 74, 4364–4367
10.1021/jo900507v CCC: $40.75 2009 American Chemical Society
Published on Web 05/07/2009