M. Xue, R. Jiao, Y. Zhang, Y. Yao, Q. Shen
FULL PAPER
and refined by full-matrix least-squares procedures based on |F|2.
All non-hydrogen atoms were refined anisotropically. The hydrogen
atoms in these complexes were all generated geometrically (C–H
bond lengths fixed at 0.95 Å), assigned appropriate isotropic ther-
mal parameters, and allowed to ride on their parent carbon atoms.
All H atoms were held stationary and included in the structure
factor calculation in the final stage of full-matrix least-squares re-
finement. The structures were solved and refined by using
SHELEXL-97 program. CCDC-725486 (for 1), -725487 (for 2),
-725488 (for 3), -725489 (for 4), -725490 (for 5), and -725491 (for
8) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
p) G. B. Nikiforov, H. W. Roesky, T. Labahn, D. Vidovic, D.
Neculai, Eur. J. Inorg. Chem. 2003, 433–436.
[3] a) L. W. M. Lee, W. E. Piers, M. R. J. Elsegood, W. Clegg, M.
Parvez, Organometallics 1999, 18, 2947–2949; b) P. G. Hayes,
W. E. Piers, L. W. M. Lee, L. K. Knight, M. Parvez, M. R. J.
Elsegood, W. Clegg, Organometallics 2001, 20, 2533–2544; c)
P. G. Hayes, W. E. Piers, R. McDonald, J. Am. Chem. Soc.
2002, 124, 2132–2133.
[4] L. F. Sánchez-BarBa, D. L. Hughes, S. M. Humphrey, M.
Bochmann, Organometallics 2005, 24, 3792–3799.
[5] F. Bonnet, M. Visseaux, D. Barbier-Baudry, E. Vigier, M. M.
Kubicki, Chem. Eur. J. 2004, 10, 2428–2434.
[6] M. Q. Xue, H. M. Sun, H. Zhou, Y. M. Yao, Q. Shen, Y.
Zhang, J. Polym. Sci., Part A 2006, 44, 1147–1152.
[7] a) W. J. Evans, K. J. Forrestal, J. W. Ziller, J. Am. Chem. Soc.
1998, 120, 9273–9282; b) W. J. Evans, J. Organomet. Chem.
2002, 647, 2–11; c) W. J. Evans, S. A. Kozimor, J. W. Ziller, N.
Kaltsoyannnis, J. Am. Chem. Soc. 2004, 126, 14533–14547; d)
W. J. Evans, J. M. Perotti, S. A. Kozimor, T. M. Champagne,
B. L. Davis, G. W. Nyce, C. H. Fujimoto, R. D. Clark, M. A.
Johnston, J. W. Ziller, Organometallics 2005, 24, 3916–3931; e)
W. J. Evans, D. S. Lee, M. A. Johnston, J. W. Ziller, Organome-
tallics 2005, 24, 6393–6397; f) W. J. Evans, Inorg. Chem. 2007,
46, 3435–3449; g) W. J. Evans, T. J. Mueller, J. W. Ziller, J. Am.
Chem. Soc. 2009, 131, 2678–2686.
Acknowledgments
We are indebted to the Chinese National Natural Science Founda-
tion for financial support (20632040).
[8] a) D. Drees, J. Magull, Z. Anorg. Allg. Chem. 1994, 620, 814–
818; b) A. Mandel, J. Magull, Z. Anorg. Allg. Chem. 1995, 621,
941–944; c) D. Drees, J. Magull, Z. Anorg. Allg. Chem. 1995,
621, 948–952.
[9] D. S. Richeson, J. F. Mitchell, K. H. Theopold, J. Am. Chem.
Soc. 1987, 109, 5868–5870.
[1]
a) L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev.
2002, 102, 3031–3065; b) W. E. Piers, D. J. H. Emslie, Coord.
Chem. Rev. 2002, 233–234, 131–155; c) V. C. Gibson, K. Spitz-
messer, Chem. Rev. 2003, 103, 283–315; d) L. M. Mirica, X.
Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013–1046;
e) G. W. Coates, D. R. Moore, Angew. Chem. Int. Ed. 2004, 43,
6618–6639.
[10] Y. M. Yao, Y. J. Luo, R. Jiao, Q. Shen, K. B. Yu, L. H. Weng,
Polyhedron 2003, 22, 441–446.
[2] a) A. G. Avent, C. F. Caro, P. B. Hitchcock, M. F. Lappert, Z.
Li, X.-H. Wei, Dalton Trans. 2004, 1567–1577; b) P. B. Hitch-
cock, M. F. Lappert, A. V. Protchenko, Chem. Commun. 2005,
951–953; c) P. G. Hayes, W. E. Piers, M. Parvez, Organometal-
lics 2005, 24, 1173–1183; d) F. Lauterwasser, P. G. Hayes, S.
Brase, W. E. Piers, L. L. Schafer, Organometallics 2004, 23,
2234–2237; e) L. K. Knight, W. E. Piers, P. Fleurat-Lessard, M.
Parvez, R. McDonald, Organometallics 2004, 23, 2087–2094; f)
A. G. Avent, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert,
A. V. Protchenko, Dalton Trans. 2004, 2272–2280; g) Z. Q.
Zhang, Y. M. Yao, Y. Zhang, Q. Shen, W. T. Wong, Inorg.
Chim. Acta 2004, 357, 3173–3180; h) M. Q. Xue, Y. M. Yao,
Q. Shen, Y. Zhang, J. Organomet. Chem. 2005, 690, 4685–4691;
i) C. Cui, A. Shafir, J. A. R. Schmidt, A. G. Oliver, J. Arnold,
Dalton Trans. 2005, 1387–1393; j) D. V. Vitanova, F. Hampel,
K. C. Hultzsch, Dalton Trans. 2005, 1565–1566; k) Y. M. Yao,
Z. Q. Zhang, H. M. Peng, Y. Zhang, Q. Shen, J. Lin, Inorg.
Chem. 2006, 45, 2175–2183; l) A. M. Neculai, D. Neculai,
H. W. Roesky, J. Magull, M. Baldus, O. Andronesi, M. Jansen,
Organometallics 2002, 21, 2590–2592; m) F. Basuli, J. C. Huff-
man, D. J. Mindiola, Inorg. Chem. 2003, 42, 8003–8010; n) D.
Neculai, H. W. Roesky, A. M. Neculai, J. Magull, R. Herbst-
Irmer, B. Walfort, D. Stalke, Organometallics 2003, 22, 2279–
2283; o) P. H. M. Budzelaar, N. N. P. Moonen, R. de Gelder,
J. M. M. Smits, A. W. Gal, Eur. J. Inorg. Chem. 2000, 753–769;
[11] Y. M. Yao, M. Q. Xue, Y. J. Luo, R. Jiao, Z. Q. Zhang, Q.
Shen, W. T. Wong, K. B. Yu, J. Sun, J. Organomet. Chem. 2003,
678, 108–116.
[12] H. M. Peng, Z. Q. Zhang, R. P. Qi, Y. M. Yao, Y. Zhang, Q.
Shen, Inorg. Chem. 2008, 47, 9828–9835.
[13] a) D. Barbier-Baudry, A. Bouazza, C. H. Brachais, A. Dor-
mond, M. Visseaux, Macromol. Rapid Commun. 2000, 21, 213–
217; b) P. A. Cameron, D. Jhurry, V. C. Gibson, A. J. P. White,
D. J. Williams, S. Williams, Macromol. Rapid Commun. 1999,
20, 616–618.
[14] A. Kowalski, A. Duda, S. Penczek, Macromolecules 1998, 31,
2114–2122.
[15] H. Y. Ma, J. Okuda, Macromolecules 2005, 38, 2665–2673.
[16] J. L. Chen, Y. M. Yao, Y. J. Luo, L. Y. Zhou, Y. Zhang, Q.
Shen, J. Organomet. Chem. 2004, 689, 1019–1024.
[17] K. C. Hultzsch, T. P. Spaniol, J. Okuda, Organometallics 1997,
16, 4845–4856.
[18] a) J. E. Parks, R. H. Holm, Inorg. Chem. 1968, 7, 1408–1416;
b) J. Feldman, S. J. McLain, A. Parthasaranthy, W. J. Marshall,
J. C. Calabrese, S. D. Arthur, Organometallics 1997, 16, 1514–
1516.
[19] J. L. Atwood, W. E. Hunter, A. L. Wayda, W. J. Evans, Inorg.
Chem. 1981, 20, 4115–4119.
Received: April 5, 2009
Published Online: August 11, 2009
4118
www.eurjic.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2009, 4110–4118