D. S. Carter et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1628–1631
1631
5. Barclay, J.; Patel, S.; Dorn, G.; Wotherspoon, G.; Moffatt, S.; Eunson, L.; Abdel’al,
S.; Natt, F.; Hall, J.; Winter, J.; Bevan, S.; Wishart, W.; Fox, A.; Ganju, P. J.
Neurosci. 2002, 22, 8139.
6. Dorn, G.; Patel, S.; Wotherspoon, G.; Hemmings-Mieszczak, M.; Barclay, J.; Natt,
F. J. C.; Martin, P.; Bevan, S.; Fox, A.; Ganju, P.; Wishart, W.; Hall, J. Nucl. Acids
Res. 2004, 32, e49.
7. Virginio, C.; Robertson, G.; Surprenant, A.; North, R. A. Mol. Pharmacol. 1998, 53,
969.
8. Jung, K.; Moon, H. D.; Lee, G. E.; Lim, H.; Park, C.; Kim, Y. J. Med. Chem. 2007, 50,
4543.
9. Jarvis, M. F.; Burgard, E. C.; McGaraughty, S.; Honore, P.; Lynch, K.; Brennan, T.
J.; Subieta, A.; Van Biesen, T.; Cartmell, J.; Bianchi, B.; Niforatos, W.; Kage, K.;
Yu, H.; Mikusa, J.; Wismer, C. T.; Zhu, C. Z.; Chu, K.; Lee, C.; Stewart, A. O.;
Polakowski, J.; Cox, B. F.; Kowaluk, E.; Williams, M.; Sullivan, J.; Faltynek, C.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 17179.
10. Ito, K.; Iwami, A.; Katsura, H.; Ikeda, M. Naunyn-Schmiedeberg’s Arch. Pharmacol.
2008, 377, 483.
11. RO-4 is selective for P2X3/P2X2/3 over other P2X purinoceptors (P2X1, P2X2,
while the other larger halogens have a much greater propensity to
act as a hydrogen bond acceptor (more active).18 This is an impor-
tant finding because functional groups that have the ability to act
as hydrogen bond acceptors can also help to improve the PK prop-
erties by lowering logP and decreasing polar surface area.19
With results suggesting a possible hydrogen bond interaction
with the groups occupying the 3-position (R1), analogs that act as
hydrogen bond donors or acceptors were prepared (Table 3; en-
tries 18–23). These analogs contained neutral, basic and acidic
functional groups. Analogs that contained neutral polar functional
groups such as cyano benzene 33, sulfone 34 and carboxamide 35
were moderately active. The acidic functionality of carboxylic acid
36 was moderately active while bioisosteric tetrazole 39 was equi-
potent with dimethoxy benzene 16. Finally, moderately basic imid-
azole 37 was active (P2X3 pIC50 = 6.8) while the much more basic
dihydroimidazole 38 was completely inactive.
In conclusion, a high-throughput screening campaign identified
a diaminopyrimidine-based series of mixed P2X3/P2X2/3 antago-
nists. Optimization of this series resulted in an impressive boost
in potency due to the cooperative effect of an isopropyl side-chain
and an ether linker. Replacements for the potentially labile 4-
methoxy group were explored. Substitution of the 3-methoxy
group with various hydrogen bond acceptors yielded active ana-
logs with reduced lipophilicity. Finally, RO-4 (32) a potent drug-
like dual P2X3/P2X2/3 antagonist was selected for further
evaluation.
P2X4, P2X5, P2X7 IC50 > 10
lM). Also, the CEREP profile of RO-4 established
selectivity across a wide range of targets (weakly active at five receptors: ML1,
H2, 5HT2A, 5HT3, 5HT6 pKi = 1–6 lM) with no activity (>50% at 10 lM) for the
remaining receptors/enzymes.
12. (a) Lipinski, C. A.; Lombardo, B. W.; Dominy, P. J. F. Adv. Drug. Del. Rev. 1997, 46,
3; (b) This series meets all the criteria defined by Lipinski for drug-likeness. As
a result RO-4 exhibited good oral bioavailability (dog SDPK: CL 13 mL/min/kg,
72%F, T1/2 1.5 h, Caco-2 permeability: AB/BA = 1).
13. (a) Manchand, P. S.; Rosen, P.; Belica, P. S.; Oliva, G. V.; Perrotta, A. V.;
Wong, HS. J. Org. Chem. 1992, 57, 3531; (b) Manchand, P. S. US Patent
4,115,650, 1978.
14. Wada, A.; Yamamoto, J.; Hamaoka, K. O.; Nagai, S.; Kanamoto, K. J. Heterocycl.
Chem. 1990, 27, 1831.
15. (a) Flippin, L. A.; Carter, D. S.; Dupree, N. J. P. D. Tetrahedron Lett. 1993, 34,
3255; (b) Flippin, L. A.; Muchowski, J. M.; Carter, D. S. J. Org. Chem. 1993, 58,
2463.
16. Further evidence in support of two separate hydrophobic pockets comes from
the ground-state conformation of dimethoxybenzene 16 (both methoxy groups
should be oriented away from each other in the plane of the aromatic ring) and
from the 3,4-methylenedioxy and 3,4-ethylenedioxy analogs of benzene 16,
which were inactive.
17. (a) Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89; (b) Howard, J. A.; Hoy, V. J.;
O’Hagen, D.; Smith, G. T. Tetrahedron 1996, 52, 38.
18. (a) Kovács, A.; Varga, Z. Coord. Chem. Rev. 2006, 250, 710; (b) Sony, S. M. M.;
Ponnuswamy, M. N. Bull. Chem. Soc. Jpn. 2006, 79, 1766.
References and notes
1. Gever, J. R.; Cockayne, D. A.; Dillon, M. P.; Burnstock, G.; Ford, A. P. D. W.
Pfluegers Archiv. 2006, 452, 513.
2. Dubyak, G. R. Mol. Pharmacol. 2007, 72, 1402.
3. Novakovic, S. D.; Kassotakis, L. C.; Oglesby, I. B.; Smith, J. A. M.; Eglen, R. M.;
Ford, A. P. D. W.; Hunter, J. C. Pain 1999, 80, 273.
4. Cockayne, D. A.; Hamilton, S. G.; Zhu, Q.; Dunn, P. M.; Zhong, Y.; Novakovic, S.;
Malmberg, A. B.; Cain, G.; Berson, A.; Kassotakis, L.; Hedley, L.; Lachnit, W. G.;
Burnstock, G.; McMahon, S. B.; Ford, A. P. D. W. Nature 2000, 407, 1011.
19. (a) Refsgaard, H. H. F.; Jensen, B. F.; Guldbrandt, M.; Christensen, M. S. J. Med.
Chem. 2005, 48, 805; (b) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.;
Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.