752
HETEROCYCLES, Vol. 77, No. 2, 2009
1988, 170, 1396.
8. H. W. Lee, C. H. Oh, A. Geyer, W. Pfleiderer, and Y. S. Park, Biochim. Biophys. Acta, 1999, 1410,
61.
9. (a) S. Kaufman and E. E. Kaufman, ‘Folates and Pterins,’ ed. by R. Blakley and S. J. Benkovic, J.
Wiley & Sons, New York, 1985, Vol. 2, pp. 251–352. (b) S. Kaufman and D. B. Fisher, ‘Molecular
Mechanisms of Oxygen Activation,’ ed. by O. Hayaishi, Academic Press, New York, 1974, pp.
285–369. (c) G. R. Guroff, J. Biol. Chem., 1969, 244, 142.
10. (a) N. S. Kwon, C. F. Nathan, D. J. Stuehr, J. Biol. Chem., 1989, 264, 20496. (b) M. A. Marletta,
Cell, 1994, 78, 927.
11. Y. Wachi, S. Yoshida, K. Komatsu, and T. Matsunaga, Jpn. Patent, 05,286,989, 1993 (Chem. Abstr.,
1994, 120, 161782t).
12. T. Saito, H. Ishikawa, Y. Hada, K. Fukui, Y. Kodera, A. Matsushima, and Y. Inada, Dyes Pigments,
2003, 56, 203.
13. (a) T. Hanaya, K. Soranaka, K. Harada, H. Yamaguchi, R. Suzuki, Y. Endo, H. Yamamoto, and W.
Pfleiderer, Heterocycles, 2006, 67, 299. (b) T. Hanaya, H. Baba, H. Toyota, and H. Yamamoto,
Tetrahedron, 2008, 64, 2090.
14. T. Hanaya, H. Toyota, and H. Yamamoto, Synlett, 2006, 2075.
15. (a) T. Hanaya, H. Baba, and H. Yamamoto, Carbohydr. Res., 2007, 342, 2159. (b) T. Hanaya, H.
Baba, M. Kanemoto, and H. Yamamoto, Heterocycles, 2008, 76, 635.
16. G. Wulff and G. Röhle, Angew. Chem., Int. Ed. Engl., 1974, 13, 157, and references cited therin.
17. M. L. Wolfrom and A. Thompson, Methods Carbohydr. Chem., 1963, 2, 211.
18. F. M. Ibatullin, K. A. Shabalin, J. V. Jänis, and A. G. Shavva, Tetrahedron Lett., 2003, 44, 7961; use
of larger amounts of methyl iodide (10 mol equiv.) and TEA (12 mol equiv.) than those reported in
this lit. led to a much improved yield (89%) of 10 from 9 (lit., 57% by use of 1.1 equiv. of methyl
iodide and 3.1 equiv. of TEA).
1
19. All newly isolated compounds hereafter in this paper gave satisfactory analytical and H-NMR
(mostly at 600 MHz) data, which will be presented in a full paper in the near future.
1
20. H-NMR for 14 (500 MHz, CDCl3) δ = 1.94, 2.06 (3H each, 2s, AcO-4,6), 2.22 (3H, s, MeS-1), 3.48
(1H, dd, J1,2 = 9.8, J2,3 = 8.8 Hz, H-2), 3.54 (1H, ddd, J4,5 = 10.1, J5,6a = 5.2, J5,6b = 2.4 Hz, H-5), 3.61
(1H, t, J3,4 = 9.5 Hz, H-3), 3.80 (6H, s, MeO), 4.08 (1H, dd, J6a,6b = 12.2 Hz, Hb-6), 4.20 (1H, dd,
2
Ha-6), 4.35 (1H, d, H-1), 4.59, 4.77 (2H each, 2d, J = 11.0 Hz, CH2O-2 or 3), 4.67, 4.81 (2H each,
2d, 2J = 10.1 Hz, CH2O-2 or 3), 5.02 (1H, t, H-4), 6.855, 6.86, 7.18, 7.30 (2H each, 4 d, Jo,m = 8.8 Hz,
C6H4).
1
21. H-NMR for 15 (500 MHz, CDCl3) δ = 1.95, 2.05 (3H each, 2s, AcO-4,6), 3.53 (1H, dd, J2,3 = 9.2,
J1,2 = 3.9 Hz, H-2), 3.80, 3.81 (3H each, 2s, MeO), 3.92 (1H, t, J3,4 = 9.5 Hz, H-3), 4.02 (1H, dd,
J6a,6b = 12.5, J5,6b = 2.1 Hz, Hb-6), 4.14 (1H, ddd, J4,5 = 10.4, J5,6a = 4.6, Hz, H-5), 4.26 (1H, dd, Ha-6),
4.58, 4.80 (2H each, 2d, 2J = 11.3 Hz, CH2O-2 or 3), 4.62, 4.67 (2H each, 2d, 2J = 11.6 Hz, CH2O-2
or 3), 5.05 (1H, dd, H-4), 6.26 (1H, d, H-1), 6.86, 6.88, 7.19, 7.29 (2H each, 4 d, Jo,m = 8.6 Hz, C6H4).
22. H. Lönn, Carbohydr. Res., 1985, 139, 105.