Inorganic Chemistry
Article
Catal. 2016, 6, 2205−2210. (g) Watanabe, Y.; Tsuji, Y.; Ohsugi, Y.
The ruthenium catalyzed N-alkylation and N-heterocyclization of
aniline using alcohols and aldehydes. Tetrahedron Lett. 1981, 22,
2667−2670.
ORCID
Notes
(5) (a) Frost, J. R.; Cheong, C. B.; Akhtar, W. M.; Caputo, D. F. J.;
Stevenson, N. G.; Donohoe, T. J. Strategic Application and
Transformation of ortho-Disubstituted Phenyl and Cyclopropyl
Ketones To Expand the Scope of Hydrogen Borrowing Catalysis. J.
Am. Chem. Soc. 2015, 137, 15664−15667. (b) Ruiz-Botella, S.; Peris, E.
Unveiling the Importance of π-Stacking in Borrowing-Hydrogen
Processes Catalysed by Iridium Complexes with Pyrene Tags. Chem. -
Eur. J. 2015, 21, 15263−15271. (c) Shen, D.; Poole, D. L.; Shotton, C.
C.; Kornahrens, A. F.; Healy, M. P.; Donohoe, T. J. Hydrogen-
Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ke-
tones and Methanol Catalyzed by Iridium. Angew. Chem., Int. Ed. 2015,
54, 1642−1645. (d) Zhang, Y.; Lim, C.-S.; Sim, D. S. B.; Pan, H.-J.;
Zhao, Y. Catalytic Enantioselective Amination of Alcohols by the Use
of Borrowing Hydrogen Methodology: Cooperative Catalysis by
Iridium and a Chiral Phosphoric Acid. Angew. Chem., Int. Ed. 2014, 53,
1399−1403. (e) Wang, D.; Zhao, K.; Yu, X.; Miao, H.; Ding, Y.
Iridium-CNP complex catalyzed cross-coupling of primary alcohols
and secondary alcohols by a borrowing hydrogen strategy. RSC Adv.
2014, 4, 42924−42929. (f) Saidi, O.; Blacker, A. J.; Farah, M. M.;
Marsden, S. P.; Williams, J. M. J. Selective Amine Cross-Coupling
Using Iridium-Catalyzed “Borrowing Hydrogen” Methodology. Angew.
Chem., Int. Ed. 2009, 48, 7375−7378. (g) Saidi, O.; Williams, J. M. J.
Iridium-Catalyzed Hydrogen Transfer Reactions; Springer: Berlin, 2011;
pp 77−106. (h) Zou, Q.; Wang, C.; Smith, J.; Xue, D.; Xiao, J.
Alkylation of Amines with Alcohols and Amines by a Single Catalyst
under Mild Conditions. Chem. - Eur. J. 2015, 21, 9656−9661.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from Macquarie University, University of
New South Wales, and the Australian Research Council is
gratefully acknowledged. This research was supported under
the Australian Research Council’s Discovery Projects funding
scheme (project number DP130101838). We are grateful to the
NMR facilities at the Mark Wainwright Analytical Centre,
UNSW, and Macquarie University. We are grateful to the
Cabot Corporation for the donation of the carbon black
(Vulcan XC-72R). C.M.W. thanks the Australian Government
for the award of an International Postgraduate Research
Scholarship (IPRS). M.B.P. thanks the Australian Government
for the Australian Government Research Training Program
Scholarship (AGRTPS).
REFERENCES
■
(1) Leonard, J.; Blacker, A. J.; Marsden, S. P.; Jones, M. F.;
Mulholland, K. R.; Newton, R. A Survey of the Borrowing Hydrogen
Approach to the Synthesis of some Pharmaceutically Relevant
Intermediates. Org. Process Res. Dev. 2015, 19, 1400−1410.
(2) (a) Fernandez, E.; Brown, J. M. Electrophilic Amination Routes
from Alkenes; Wiley-VCH Verlag GmbH: Weinheim, 2007. (b) Genet,
J.-P.; Greck, C.; Lavergne, D. Stereoselective Electrophilic Amination with
Sulfonyloxycarbamates and Azodicarboxylates; Wiley-VCH Verlag
GmbH: Weinheim, 2007. (c) Gribble, G. W. Sodium borohydride in
carboxylic acid media: a phenomenal reduction system. Chem. Soc. Rev.
1998, 27, 395−404. (d) Hartwig, J. F. Palladium-Catalyzed Amination
of Aryl Halides and Sulfonates; Wiley-VCH Verlag GmbH: Weinheim,
2007.
́
(6) Pena-Lopez, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller,
̃
M. Manganese-Catalyzed Hydrogen-Autotransfer C−C Bond For-
mation: α-Alkylation of Ketones with Primary Alcohols. Angew. Chem.,
Int. Ed. 2016, 55, 14967−14971.
(7) (a) Zhang, G.; Yin, Z.; Zheng, S. Cobalt-Catalyzed N-Alkylation
of Amines with Alcohols. Org. Lett. 2016, 18, 300−303. (b) Quintard,
A.; Rodriguez, J. A Step into an eco-Compatible Future: Iron- and
Cobalt-catalyzed Borrowing Hydrogen Transformation. ChemSusChem
(3) (a) Crabtree, R. H. An Organometallic Future in Green and
Energy Chemistry? Organometallics 2011, 30, 17−19. (b) Bahn, S.;
2016, 9, 28−30. (c) Rosler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Cobalt-
̈
̈
Catalyzed Alkylation of Aromatic Amines by Alcohols. Angew. Chem.,
Int. Ed. 2015, 54, 15046−15050.
Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The
Catalytic Amination of Alcohols. ChemCatChem 2011, 3, 1853−1864.
(c) Yang, Q.; Wang, Q.; Yu, Z. Substitution of alcohols by N-
nucleophiles via transition metal-catalyzed dehydrogenation. Chem.
Soc. Rev. 2015, 44, 2305−2329. (d) Nixon, T. D.; Whittlesey, M. K.;
Williams, J. M. J. Transition metal catalysed reactions of alcohols using
borrowing hydrogen methodology. Dalton Trans. 2009, 2009, 753−
762. (e) Watson, A. J. A.; Williams, J. M. J. The Give and Take of
Alcohol Activation. Science 2010, 329, 635−636. (f) Marr, A. C.
Organometallic hydrogen transfer and dehydrogenation catalysts for
the conversion of bio-renewable alcohols. Catal. Sci. Technol. 2012, 2,
279−287.
(8) Shimizu, K.-i.; Imaiida, N.; Kon, K.; Hakim Siddiki, S. M. A.;
Satsuma, A. Heterogeneous Ni Catalysts for N-Alkylation of Amines
with Alcohols. ACS Catal. 2013, 3, 998−1005.
(9) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N.
Transition metal-catalyzed N-alkylation of amines by alcohols. J. Chem.
Soc., Chem. Commun. 1981, 1981, 611−612.
(10) Tanaka, N.; Hatanaka, M.; Watanabe, Y. Transition metal-
catalyzed N-alkylation of NH groups of azoles with alcohols. Chem.
Lett. 1992, 21, 575−578.
(11) Liu, C.; Liao, S.; Li, Q.; Feng, S.; Sun, Q.; Yu, X.; Xu, Q.
Discovery and Mechanistic Studies of a General Air-Promoted Metal-
Catalyzed Aerobic N-Alkylation Reaction of Amides and Amines with
Alcohols. J. Org. Chem. 2011, 76, 5759−5773.
(12) (a) Blank, B.; Michlik, S.; Kempe, R. Selective iridium-catalyzed
alkylation of (hetero)aromatic amines and diamines with alcohols
under mild reaction conditions. Chem. - Eur. J. 2009, 15, 3790−3799.
(b) Michlik, S.; Hille, T.; Kempe, R. The Iridium-Catalyzed Synthesis
of Symmetrically and Unsymmetrically Alkylated Diamines under Mild
Reaction Conditions. Adv. Synth. Catal. 2012, 354, 847−862.
(c) Michlik, S.; Kempe, R. New Iridium Catalysts for the Efficient
Alkylation of Anilines by Alcohols under Mild Conditions. Chem. - Eur.
J. 2010, 16, 13193−13198. (d) Ruch, S.; Irrgang, T.; Kempe, R. New
Iridium Catalysts for the Selective Alkylation of Amines by Alcohols
under Mild Conditions and for the Synthesis of Quinolines by
Acceptor-less Dehydrogenative Condensation. Chem. - Eur. J. 2014,
20, 13279−13285. (e) Jumde, V. R.; Gonsalvi, L.; Guerriero, A.;
Peruzzini, M.; Taddei, M. A Ruthenium-Based Catalytic System for a
(4) (a) Dang, T. T.; Ramalingam, B.; Seayad, A. M. Efficient
Ruthenium-Catalyzed N-Methylation of Amines Using Methanol. ACS
Catal. 2015, 5, 4082−4088. (b) Eka Putra, A.; Oe, Y.; Ohta, T.
Ruthenium-Catalyzed Enantioselective Synthesis of β-Amino Alcohols
from 1,2-Diols by “Borrowing Hydrogen. Eur. J. Org. Chem. 2013,
2013, 6146−6151. (c) Enyong, A. B.; Moasser, B. Ruthenium-
Catalyzed N-Alkylation of Amines with Alcohols under Mild
Conditions Using the Borrowing Hydrogen Methodology. J. Org.
Chem. 2014, 79, 7553−7563. (d) Hamid, M. H. S. A.; Allen, C. L.;
Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.;
Williams, J. M. J. Ruthenium-Catalyzed N-Alkylation of Amines and
Sulfonamides Using Borrowing Hydrogen Methodology. J. Am. Chem.
Soc. 2009, 131, 1766−1774. (e) Hollmann, D.; Bahn, S.; Tillack, A.;
̈
Parton, R.; Altink, R.; Beller, M. A novel salt-free ruthenium-catalyzed
alkylation of aryl amines. Tetrahedron Lett. 2008, 49, 5742−5745.
(f) Marichev, K. O.; Takacs, J. M. Ruthenium-Catalyzed Amination of
Secondary Alcohols Using Borrowing Hydrogen Methodology. ACS
E
Inorg. Chem. XXXX, XXX, XXX−XXX