In summary, we have demonstrated the controlled generation
of violet emitting elongated nanotapes and nearly mono-
dispersed submicrotubes from two tailor-made p-conjugated
molecules 1 and 2, respectively, differing only in their
conjugation lengths in an organic solvent during the slow
evaporation process via self-assembly. The driving force for
the nanotape and tube formation is intermolecular hydrogen
bonded interactions between pyrazole nitrogens and phenyl/
pyrazole protons. The evolution mechanism of the tubular
structure possibly involved a sequence of steps: (i) sheet-like
structure development forming a precursor sheet, (ii) curling
of a precursor sheet and (iii) seaming of the curled sheet
opposite edges to form a tube. These nanotapes and tubes
may find application in the field of nanohybrid materials,
optoelectronics and biological transport systems.
We are grateful to DST (Fast Track Scheme for Young
Scientist Grant No. SR/FTP/CS-115/2007), New Delhi for
financial support. Our special thanks to the Centre for
Nanotechnology (CNT), UoH for providing the TEM facility
and also CIL, UoH for SEM and Confocal Fluorescence
Microscopy facility. We extend our thanks to Prof. T. P.
Radhakrishnan and Prof. A. Samanta for providing the
instrument facility. NC thanks CSIR New Delhi for JRF.
We express our gratitude to the referees for their suggestions.
Notes and references
Fig. 3 SEM micrographs of 2 (a) submicrotubes (scale bar is 10 mm),
(b) front, back and side view of tubes. White dotted circle: front view
of an open ended feature. Black arrows: edges along the length of the
tubes (scale bar is 10 mm), (c) Left white dotted rectangle: an uncurled
precursor sheet-like structure (scale bar is 10 mm). (d) White arrows:
Defects in the open-ended feature. (e–m) Selected tubes showing their
different types of open-ended features (scale bars are 2 mm). (h) Side
view of a tube.
1 (a) J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4763;
(b) G. W. Whitesides and B. Grzybowski, Science, 2002, 295, 2418;
(c) L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071; (d) D. T. Bong, T. D. Clark,
J. R. Granja and M. R. Ghadiri, Angew. Chem., Int. Ed., 2001,
40, 988; (e) A. P. H. J. Schenning and E. W. Meijer, Chem.
Commun., 2005, 3245; (f) L. C. Palmer and S. I. Stupp, Acc. Chem.
Res., 2008, 41, 1674; (g) A. Ajayaghosh and V. K. Praveen, Acc.
Chem. Res., 2007, 40, 644.
2 (a) A. Langner, S. L. Tait, N. Lin, C. Rajadurai, M. Ruben and
K. Kern, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 17927;
(b) S. L. Tait, A. Langner, N. Lin, R. Chandrasekar, M. Ruben
and K. Kern, ChemPhysChem, 2008, 9, 2495.
3 (a) Y. S. Zhao, W. Yang, D. Xiao, X. Sheng, X. Yang, Z. Shuai,
Y. Luo and J. Yao, Chem. Mater., 2005, 17, 6430; (b) N. Diaz,
F.-X. Simon, M. Schmutz, M. Rawiso, G. Decher, J. Jestin and P. J.
M. Lsini, Angew. Chem., Int. Ed., 2005, 44, 3260; (c) P. Samori,
V. Francke, K. Muellen and J. P. Rabe, Chem.–Eur. J., 1999, 5,
2312; (d) S. Allard, M. Forster, B. Souharce, H. Thiem and
U. Scherf, Angew. Chem., Int. Ed., 2008, 47, 4070;
(e) A. Ajayaghosh, C. Vijayakumar, R. Varghese and
S. J. George, Angew. Chem., Int. Ed., 2006, 45, 456; (f) Y. Tian,
Q. He, C. Tao and J. Li, Langmuir, 2006, 22, 360; (g) P. Xue, R. Lu,
G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and H. Ihara,
Chem.–Eur. J., 2007, 13, 8231.
Fig. 4 Confocal fluorescence microscopic images of nanotapes 1
(scale bar is 10 mm) and submicrotubes 2 (scale bar is 15 mm). Left:
after excitation. Right: before excitation. Extreme Right: solid state
emission data of 1 and 2 (lex = 250).
4 (a) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee and
N. Khazanovich, Nature, 1993, 366, 324; (b) S. Iijima, Nature, 1991,
354, 56; (c) P. M. Ajayan and T. W. Ebbeson, Rep. Prog. Phys.,
1997, 60, 1025; (d) L. Shu, M. Muri, R. Krupke and M. Mayor, Org.
Biomol. Chem., 2009, 7, 1081.
5 T. Yamaguchi, N. Ishii, K. Tashiro and T. Aida, J. Am. Chem. Soc.,
2003, 125, 13934.
6 G. John, M. Masuda, Y. Okada, K. Yase and T. Shimizu, Adv.
Mater., 2001, 13, 715.
¨
for the formation of organic nano- and submicrostructures
with distinctive shapes. The formation of nanotapes and
submicrotubes from 1 and 2, respectively is clearly mediated
by H bonding interactions.
Furthermore, the confocal fluorescence microscopy images
(Fig. 4) of 1 and 2 clearly displayed that both nanotapes and
tubes are indeed emitting violet colours with varying intensity
upon excitation with laser light (lex = 250). The solid state
emission intensity of 1 is lower than 2 which is in accordance
with their respective fluorescence quantum yields in solution.
7 E. N. Savariar, K. Krishnamoorthy and S. Thayumanavan, Nat.
Nanotechnol., 2008, 3, 112.
8 H. Ozawa, H. Tanaka, M. Kawao, S. Unoa and Nakazato, Chem.
Commun., 2009, 7411.
9 (a) C. Rajadurai, O. Fuhr, R. Kruk, M. Ghafari, H. Hahn and
M. Ruben, Chem. Commun., 2007, 2636; (b) S. Basak, P. Hui and
R. Chandrasekar, Synthesis, 2009, 23, 4042.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2915–2917 | 2917