higher reactivity of monocondensation product, even if the
parent ketone was used in a large excess.7 Moreover, the
issue of regioselectivity may arise for nonsymmetric ketones.
Alternatively, Sato developed an alkyne-based intramolecular
nucleophilic acyl substitution (INAS) reaction using a Ti(II)
reagent, which afforded exclusively E- product.8 Falck and
co-workers devised an interesting homologation-condensation
cascade involving tert-trihalomethylcarbinols.9 On the other
hand, only one recent report by Overman provided access
to R-Z-alkylidene cycloketones, using a two-step sequence
(RZ ) alkyl).10 Herein we report a convenient, flexible and
stereospecific approach via highly functionalized alkenyl-
lithium, offering a wider choice of alkene substitutions
(RZ ) alkyl, aryl).
reactivity of organolithium species toward various functional
groups including alkoxycarbonyl, this approach is non-
trivial.12
Optimization of reaction parameters was carried out using
substrates 1a-d to evaluate the effects of solvent, lithiating
reagent, and the ester group (Table 1). The optimal results
Table 1. Optimization of INAS Reaction of
ꢀ-Amino-alkenyllithiuma
We envisaged that R-alkylidene aza-cycloketones were
accessible from sequential I-Li exchange of vinyl iodide A
(Figure 1, X ) NR) and cyclization of the ꢀ-amino-
entry
1, R
1a, Me
1a, Me
1a, Me
1a, Me
1a, Me
1b, Et
R′Li (equiv)
solvent
2a (%)b
1
nBuLi (1.0)
nBuLi (1.2)
nBuLi (1.0)
tBuLi (2.0)
MesLi (2.0)
nBuLi (1.0)
nBuLi (1.0)
nBuLi (1.0)
nBuLi (1.0)
nBuLi (1.0)
nBuLi (1.0)
THF
THF
THF
THF
THF
THF
THF
THF
Et2O
Tol
67
60
59
29
complex
65
29
53
24
2
3c
4
5
6
7
8
1c, tBu
1d, CH2CF3
1a, Me
1a, Me
1a, Me
9
10
20
56
11d
THF
a Conditions: 0.5 mmol 1, 5 mL THF, -78 °C, 10-30 min, unless
noted otherwise. b Isolated yields. c Reaction run and quenched at -110
°C. d With 2 equiv TMEDA as the additive.
Figure 1. Approaches to R-alkylidene cycloketones.
n
were obtained by using 1.0 eq. BuLi in THF for methyl/
ethyl esters at -78 °C. Additional amount of this lithiating
reagent or lower temperature (-110 °C) resulted in inferior
alkenyllithium species onto the ester. Since the alkene
geometry of A could be readily established by known
methods,11 this route is amenable to both E- and Z- products
with firm control of stereochemistry. Moreover, the site of
the cyclization is unambiguous, and double condensation
would not interfere. Nevertheless, in view of the high
n
yields (entries 2, 3). It is noteworthy that BuLi metalated
alkenyl iodide preferentially, instead of attacking the ester.
In addition, ꢀ-elimination was not observed, even though
the tertiary amine moiety of alkenyllithium intermediates
cannot be stabilized by N-deprotonation.13 In contrast to some
14a,b
t
other reports, BuLi
and MesLi14c were both inferior
t
(entries 4, 5). With regard to the ester moiety, bulky Bu
was found to be detrimental (entry 7). The slightly electron-
withdrawing CH2CF3 group produced a moderate yield,
although trifluoroethoxy anion is a better nucleofuge than
ordinary alkoxides (entry 8). THF represented the most
suitable solvent, shifting to ether or toluene lowered the yield
considerably (entries 9, 10). Addition of TMEDA (2 equiv)
offered no advantage (entry 11). The reaction time was also
(5) For selected recent examples, see: (a) Goldstein, S. W.; Overman,
L. E.; Rabinowitz, M. H. J. Org. Chem. 1992, 57, 1179. (b) Fox, D. N. A.;
Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Gallagher, T. J. Am. Chem.
Soc. 1991, 113, 2652. (c) Wang, W.; Mei, Y.; Li, H.; Wang, J. Org. Lett.
2005, 7, 601. (d) Lian, J.-J.; Lin, C.-C.; Chang, H.-K.; Chen, P.-C.; Liu,
R.-S. J. Am. Chem. Soc. 2006, 128, 9661. (e) Kreher, U. P.; Rosamilia,
A. E.; Raston, C. L.; Scott, J. L.; Strauss, C. R. Org. Lett. 2003, 5, 3107.
(f) Yanagisawa, A.; Goudu, R.; Arai, T. Org. Lett. 2004, 6, 4281. (g)
Ishihara, K.; Kurihara, H.; Yamamoto, H. Synlett 1997, 597.
(6) Sudau, A.; Mu¨nch, W.; Bats, J.-W.; Nubbemeyer, U. Eur. J. Org.
Chem. 2002, 3315.
(7) (a) McElvain, S. M.; Rorig, K. J. Am. Chem. Soc. 1948, 70, 1820.
(b) Walton, H. M. J. Org. Chem. 1957, 22, 1161. (c) Rosamilia, A. E.;
Giarrusso, M. A.; Scott, J. L.; Strauss, C. R. Green Chem. 2006, 8, 1042.
(8) (a) Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J. Am. Chem.
Soc. 1997, 119, 6984. (b) Okamoto, S.; Kasatkin, A.; Zubaidha, P. K.; Sato,
F. J. Am. Chem. Soc. 1996, 118, 2208. For an excellent overview, see: (c)
Sato, F.; Urabe, H.; Okamoto, S. Synlett 2000, 753.
(12) (a) Nagaki, A.; Kim, H.; Yoshida, J.-i. Angew. Chem., Int. Ed. 2008,
47, 7833. For a review of functionalized organometallic species, see: (b)
Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int. Ed.
2000, 39, 4414.
(13) (a) Yus, M.; Foubelo, F. In Handbook of Functionalized Organo-
metallics; Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005; pp 18-23. (b)
Barluenga, J.; Foubelo, F.; Fan˜ana´s, F. J.; Yus, M. J. Chem. Soc., Perkin
Trans. 1 1989, 553.
(9) Falck, J. R.; He, A.; Reddy, L. M.; Kundu, A.; Barma, D. K.;
Bandyopadhyay, A.; Kamila, S.; Akella, R.; Bejot, R.; Mioskowski, C. Org.
Lett. 2006, 8, 4645.
(14) (a) Paleo, M. R.; Lamas, C.; Castedo, C.; Dom´ıngues, D. J. Org.
Chem. 1992, 57, 2029. (b) Kim, D.; Kim, I. H. Tetrahedron Lett. 1997, 38,
415. (c) Kondo, Y.; Asai, M.; Miura, T.; Uchiyama, M.; Sakamoto, T. Org.
(10) Overman, L. E.; Veltuisen, E. J. J. Org. Chem. 2006, 71, 1581.
(11) Taber, D. F.; Sikkander, M. I.; Berry, J. F.; Frankowski, K. J. J.
Org. Chem. 2008, 73, 2029.
Lett. 2001, 3, 13
.
2012
Org. Lett., Vol. 11, No. 9, 2009