TABLE 2. 1H NMR Spectrum of Compounds 3a-e, 6a-c, and 7
Com-
pound
Chemical shifts, δ, ppm, J (Hz)
3a
4.24 (1H, s, Н-3); 5.09 (1Н, s, Н-4); 5.99 (1Н, d, J = 2.6, Н-3 furan);
6.34 (1Н, dd, J = 2.6, J = 1.6, Н-4 furan); 6.90 (1Н, t, J = 7.2, Harom);
7.05 (1Н, t, J = 7.4, Harom); 7.20-7.54 (9Н, m, Н-5 furan and Harom);
8.25 and 9.57 (both 1Н, both br. s, NH2);
10.52 and 10.57 (both 1Н, both br. s, 2NHCO); 13.18 (1H, br. s, N(1)H)
3b
3c
4.11 (1H, s, Н-3); 5.06 (1H, s, Н-4); 6.90 (1H, t, J = 7.0, Harom); 7.07 (1H, t, J = 7.0, Harom);
7.20 (4H, m, Harom); 7.31-7.38 (5H, m, Harom); 7.54 (2H, d, J = 7.5, Harom);
7.58 (2H, d, J = 7.5, Harom); 8.17 and 9.41 (both 1H, both br. s, NH2);
10.52 and 10.54 (both 1H, both br. s, 2NHCO); 13.33 (1H, br. s, N(1)H)
2.25 (3Н, s, СН3); 4.07 (1H, s, Н-3); 5.01 (1H, s, Н-4); 6.90 (1H, t, J = 6.7, Harom);
7.07 (1Н, t, J = 6.7, Harom); 7.12 (2H, d, J = 6.9, Harom); 7.20 (2H, t, J = 7.0, Harom);
7.24 (2H, d, J = 6.9, Harom); 7.32 (2H, t, J = 6.6, Harom); 7.53 (2H, d, J = 7.8, Harom);
7.58 (2H, d, J = 7.8, Harom); 8.13 and 9.38 (both 1Н, both br. s, NH2);
10.49 and 10.51 (both 1Н, both br. s, 2NHCO); 13.32 (1Н, br. s, N(1)H)
3d
4,25 (1Н, s, Н-3); 5.02 (1Н, s, Н-4); 6.89 (1Н, t, J = 7.1, Harom); 7.05 (1Н, t, J = 7.2, Harom);
7.19 (2Н, t, J = 7.7, Harom); 7.30 (2Н, t, J = 7.7, Harom); 7.38 (2Н, d, J = 8.3, Harom);
7.47 (2Н, d, J = 8.3, Harom); 7.53 (2Н, d, J = 8.0, Harom); 7.65 (2Н, d, J = 8.1, Harom);
8.92 and 9.91 (both 1Н, both br. s, NH2); 10.52 and 10.96 (both 1Н, both br. s, 2CONH);
13.35 (1Н, br. s, N(1)H)
3e
6a
2.21 (3Н, s, СН3); 4.25 (1H, s, Н-3); 5.01 (1H, s, Н-4); 6.72 (1H, d, J = 6.8, Harom);
7.03-7.10 (2H, m, Harom); 7.28-7.48 (8H, m, Harom); 7.65 (2H, d, J = 8.4, Harom);
8.88 and 9.88 (both 1Н, both br. s, NH2); 10.52 and 10.95 (both 1Н, both br. s, 2NHCO);
13.30 (1Н, br. s, N(1)H)
2.43 (3Н, s, СН3); 3.96 (1H, c, Н-3); 4.74 (1H, s, Н-4); 6.11 (1H, d, J = 2.0, Н-3 furan);
6.34 (1H, dd, J = 2.0, J = 1.5, Н-4 furan); 6.92 (1H, t, J = 7.3, Harom);
7.05 (1H, t, J = 7.3, Harom); 7.19 (2H, t, J = 7.8, Harom); 7.30 (2H, t, J = 7.8, Harom);
7.52 (2H, d, J = 7.7, Harom); 7.56-7.60 (3Н, m, Harom and Н-5 furan); 7.78 (2Н, br. s, NH2);
8.40 and 10.25 (both 1Н, both br. s, 2NHCO)
6b
6c
7
3.60 (1Н, s, Н-3); 4.23 and 4.37 (both 1Н, both d, 2J = 13.1, CH2); 4.66 (1Н, s, Н-4);
6.92 (1Н, t, J = 7.2, Harom); 7.08 (1Н, t, J = 7.2, Harom); 7.14–7.35 (12Н, m, Harom);
7.39 (2Н, d, J = 8.0, Harom); 7.44 (2Н, d, J = 8.1, Harom); 7.56 (2Н, br. s, NH2);
7.61 (2Н, d, J = 8.0, Harom); 8.89 and 9.91 (both 1Н, both br. s, 2NHCO)
2.25 (3Н, s, СН3); 3.57 (1Н, s, Н-3); 4.24 and 4.37 (both 1H, both d, 2J = 13.2, СН2);
4.62 (1Н, s, Н-4); 6.93 (1Н, t, J = 6.5, Harom); 7.06–7.50 (16Н, m, Harom);
7.56 (2Н, br. s, NH2); 7.61 (2Н, d, J = 7.5, Harom);
8.84 and 9.88 (both 1Н, both br. s, 2NHCO)
3.90 (1H, d, J = 5.3, Н-3); 4.12 and 4.24 (both 1H, both d, 2J = 12.1, СН2);
4.70 (1H, d, J = 5.3, Н-4); 6.20 (1H, d, J = 3.0, Н-3 furan);
6.35 (1H, dd, J = 3.0, J = 1.9, Н-4 furan); 7.00 (1H, t, J = 7.3, Harom);
7.07 (1H, t, J = 7.3, Harom); 7.20-7.35 (10Н, m, Harom); 7.44 (1H, d, J = 7.9, Harom);
7.56-7.60 (3Н, m, Н-5 furan and Harom); 9.58 (1Н, br. s, N(1)H);
10.30 and 10.32 (both 1Н, both br. s, NHCO)
We also noted the presence of signals of the amino group protons displayed as two broadened singlets at
8.31-8.92 and 9.38-9.91 ppm respectively. These data show the nonequivalence of the NH2 group protons,
caused probably by intramolecular hydrogen bonds. Previously, according to X-ray structural data, we detected
the presence of an extremely strong intramolecular hydrogen bond, closing a six-membered ring between a
hydrogen atom of the amino group and the oxygen atom of an amide fragment in pyridine, in which the amino
group and the arylcarbamoyl fragment are disposed vicinally [9].
The mass spectra of the substituted tetrahydropyridine-2-thiones 3a-e are characterized by the presence
of a peak for the molecular ion at an even number, which corresponds to the "nitrogen rule" [10], and also by the
presence of an [M+2]+ ion which may indicate the content in the molecule of one sulfur atom [11] (Table 3).
A special feature of the 1H NMR spectra of substituted 3,4-dihydropyridines 6a,b and tetrahydropyridin-
2-one 7 is the splitting of the SCH2Ph methylene group proton signals into two doublets, which indicates their
nonequivalence, caused by the absence of rotation of the alkyl substituent around the S–CH2Ph bond. This fact,
known in a series of partially hydrogenated 2-alkylthiopyridines [12, 13], enables 2J be recorded for the SCH2Ph
group, which is within the limits 12.1-13.2 Hz (Table 2).
817