and a satisfactory reactivity in Pd-catalyzed coupling with the
use of appropriate ligands. Even if the oxidative addition step
to the catalyst is less favorable with these reagents, use of elec-
tron-rich tertiary phosphines can provide yields comparable to
those obtained with the usual electrophiles.4e,5f,8 The advantages
in the use of phosphates compared to tosylates are their stability
and their simple and inexpensive preparation from the reaction
of phosphoryl chloride with an in situ generated enolate. The
analogous vinyl tosylates require the use of the more expensive
tosyl anhydride for effective derivatization.5b
A Ligand Free and Room Temperature Protocol
for Pd-Catalyzed Kumada-Corriu Couplings of
Unactivated Alkenyl Phosphates
Delphine Gauthier, Stephan Beckendorf, Thomas M. Gøgsig,
Anders T. Lindhardt, and Troels Skrydstrup*
The Center for Insoluble Protein Structures (inSPIN),
Department of Chemistry and the Interdisciplinary
Nanoscience Center, Aarhus UniVersity,
Langelandsgade 140, 8000 Aarhus C, Denmark
In previous reports, we disclosed the application of unactivated
alkenyl phosphates for the direct synthesis of unsymmetrical diaryl
alkenes employing Ni-catalyzed Suzuki-Miyaura and the Pd-
catalyzed Negishi couplings.4a,j,k Hartwig and co-workers revealed
in 2005 the effective coupling of alkenyl tosylates with Grignard
reagents using Pd(dba)2 and JosiPhos ligands.5b Only few reports
on the couplings of unactivated vinyl phosphates with Grignard
reagents have previously been published.4c,9 For example, Kumada
et al. examined a Ni-catalyzed coupling of unactivated aryl phos-
phates with aryl Grignard reagents.9c,10 More recently, Miller
investigated a cross-coupling of an aryl Grignard reagent with in
situ-derived enol phosphates using PdCl2(PPh3)2 as catalyst.9e Iron
catalysis proved also to be particularly efficient for the coupling
of Grignard reagents with terminal dienol and trienol phosphates
as reported by Cahiez et al.11 Furthermore, previous reports have
described that NiBr2 can promote cross-coupling of enol phos-
phates with silylmethylmagnesium reagents without ligands.7c,d
From the point of view of experimental ease, the development
of a palladium ligandless system for promoting Kumada-Corriu
couplings would be of high interest. In this paper, we demon-
ReceiVed January 19, 2009
Kumada-Corriu cross-couplings of nonactivated cyclic and
acyclic vinyl phosphates with aryl magnesium reagents
afforded a series of 1,1-disubtituted alkenes in good yields
for most cases when the reactions were performed at room
temperature with the simple palladium salt, PdCl2, without
the presence of phosphine ligands.
(5) (a) Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457. (b) Limmert,
M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364. (c) Roy, A. H.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704. (d) Baker, W. R.; Pratt, J. K.
Tetrahedron 1993, 39, 8739. (e) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199.
(f) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42, 5993. (g) Lo
Galbo, F.; Occhiato, E. G.; Guarna, A.; Faggi, C. J. Org. Chem. 2003, 68, 6360.
(h) Klapars, A.; Campos, K. R.; Chen, C.; Volante, R. P. Org. Lett. 2005, 7,
1185. (i) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2003, 125, 6653.
Palladium-catalyzed coupling reactions have emerged as
powerful tools in synthetic organic chemistry for the construction
of carbon-carbon bonds.1 Along side the traditional electro-
philes,1a,2 alkenyl phosphates have proved to be attractive and
convenient coupling partners in such transformations.3-7 Com-
pared to the corresponding and more widely used triflates or
nonaflates, phosphates and tosylates display a higher stability
(6) (a) Hansen, A. L.; Skrydstrup, T. Org. Lett. 2005, 7, 5585. (b) Fu, X.;
Zhang, S.; Yin, J.; McAllister, T. L.; Jiang, S. A.; Chou-Hong, T.; Thiruven-
gadam, K.; Zhang, F. Tetrahedron Lett. 2002, 43, 573.
(1) (a) Tsuji, J. Palladium Reagents and Catalysts, New PerspectiVes For
the 21st Century; John Wiley & Sons: Chichester, U.K., 2004. (b) de Meijere,
A.; Diederich, F. Metal-catalysed Cross-coupling Reactions, 2nd ed.; Wiley-
VCH: Weinheim, Germany, 2004. (c) Handbook of Organopalladium Chemistry
for Organic Synthesis; Negishi, E., Ed.; John Wiley & Sons: New York, 2002.
(d) Tsuji, J. Transition Metal Reagents and Catalysts: InnoVations in Organic
Synthesis; John Wiley & Sons: Chichester, U.K., 2004.
(2) (a) Littke, A. F.; Fu, G., F. Angew. Chem., Int. Ed. 2002, 41, 4176. (b)
Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009.
(3) (a) Protti, S.; Fagnoni, M. Chem. Com. 2008, 3611. (b) Steinhuebel, D.;
Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org. Chem. 2005, 70, 10124. (c)
Nicolaou, K. C.; Shi, G.-Q.; Gunzner, J. L.; Ga¨rtner, P.; Yang, Z. J. Am. Chem.
Soc. 1997, 119, 5467. (d) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125,
12527. (e) Wu, J.; Yang, Z. J. Org. Chem. 2001, 66, 7875.
(4) (a) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. Chem.
Commun. 2006, 4137. (b) Tang, Z.-Y.; Spinella, S.; Hu, Q.-S. Tetrahedron Lett.
2006, 47, 2427. (c) Larsen, U. S.; Martiny, L.; Begtrup, M. Tetrahedron Lett.
2005, 46, 4261. (d) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058.
(e) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
11818. (f) Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001,
3, 3049. (g) Lepifre, F.; Clavier, S.; Bouyssou, P.; Coudert, G. Tetrahedron
2001, 57, 6969. (h) Nan, Y.; Yang, Z. Tetrahedron Lett. 1999, 40, 3321. (i)
Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060. (j) Hansen,
A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. J. Org. Chem. 2007, 72, 6464.
(k) Lindhardt, A. T.; Gøgsig, T. M.; Skrydstrup, T. J. Org. Chem. 2009, 74,
135.
(7) Representative references for Ni- or Pd-catalyzed cross-coupling of enol
phosphates with organometallic reagents: (a) Pd/R3Al: Takai, K.; Sato, M.;
Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1984, 57, 108. (b) Ni/R3Al:
Fukumiya, N.; Oki, M.; Aratani, T. Chem. Ind. (London) 1981, 606. (c) Ni or
Pd/Me3SiCH2MgCl: Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada,
M. Synthesis 1981, 1001. (d) Ni or Pd/(i-PrO)2MeSiCH2MgCl: Tamao, K.; Ishida,
N.; Kumada, M. J. Org. Chem. 1983, 48, 2122. (e) Ni/RMgX: Sofia, A.;
Karlstrom, E.; Itami, K.; Backvall, J. J. Org. Chem. 1999, 64, 1745. (f) Ni/
RZnBr: Wu, J.; Yang, Z. J. Org. Chem. 2001, 66, 7875. (g) Pd/RnMn: Fugami,
K.; Oshima, K.; Utimoto, K. Chem. Lett. 1987, 2203.
(8) (a) Ebran, J.-P.; Hansen, A. L.; Gøgsig, T. M.; Skrydstrup, T. J. Am.
Chem. Soc. 2007, 129, 6931. (b) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.;
Norrby, P.-O.; Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349.
(9) Csp2-Csp2(aryl Grignard) linkages: (a) Cossy, J.; Belotti, D. Tetrahedron
1999, 55, 5145. (b) Sahlberg, C.; Quader, A.; Claesson, A. Tetrahedron Lett.
1987, 24, 5137. (c) Hayashi, T.; Katsuro, Y.; Okamoto, Y.; Kumada, M.
Tetrahedron Lett. 1981, 22, 4449. (d) Schweir, T.; Sromek, A. W.; Yap, D. M. L.;
Chernak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. (e) Miller,
J. A. Tetrahedron Lett. 2002, 43, 7111. Csp2-Csp3(alkyl Grignard) linkages: (f)
Armstrong, R. J.; Harris, F. L.; Weiler, L. Can. J. Chem. 1982, 60, 673. (g)
William, A. D.; Kobayashi, Y. J. Org. Chem. 2002, 67, 8771.
(10) For other examples of ligand free Kumada-Curriu couplings with Ni,
see ref 9g: Lipshutz, B. H.; Tasler, S.; Chrisman, W.; Spliethoff, B.; Tesche, B.
J. Org. Chem. 2003, 68, 1190.
(11) Cahiez, G.; Habiak, V.; Gager, O. Org. Lett. 2008, 10, 2389.
3536 J. Org. Chem. 2009, 74, 3536–3539
10.1021/jo900098a CCC: $40.75 2009 American Chemical Society
Published on Web 04/03/2009