Waste-Free Synthesis of Condensed Heterocyclic Compounds
TABLE 1. Reaction of N-Phenylanthranilic Acid (1a) with
SCHEME 1. Coupling of 2-Substituted Benzoic Acids with
Alkynes
Diphenylacetylene (2a)a
% yieldb
temp time
entry
Rh-cat
ligand solvent (°C) (h)
3a
4a
1
2
3
4
5
6
7
8
9
[(Cp*RhCl2)2]
[(Cp*RhCl2)2]
[{RhCl(cod)}2] C5H2Ph4 o-xylene 120
[{RhCl(cod)}2] C5H2Ph4 DMF
[{RhCl(cod)}2] C5H2Ph4 DMF
[{RhCl(cod)}2] C5H2Ph4 DMF
[{RhCl(cod)}2] C5H2Ph4 DMF
-
-
DMF
o-xylene 120
120
4
2
3
2
1
2
8
2
2
41
94 (85)
9
18 (17) 79 (73)
14
5
0
0
53
120
140
100
80
120
120
salicylic acids with alkynes efficiently without decarboxylation
under appropriate conditions to furnish the corresponding 8-amino-
and 8-hydroxyisocoumarin derivatives selectively in good yields
(path a in Scheme 1, Z ) NHR or OH). Actually, most
8-aminoisocoumarins obtained have been found to show solid-
state fluorescence, while the parent 8-unsubstituted ones were not
fluorescent. Furthermore, by using another selected Rh/Cu catalyst
system in the reaction of N-phenylanthranilic acids, 4-ethenylcar-
bazoles can be synthesized predominantly (path b in Scheme 1).9
Carbazoles have been attractive synthesis targets in medicinal
chemistry and materials field, because of their biological activities
80
58
37
0
5
0
6
[{RhCl(cod)}2]
[{RhCl(cod)}2] C5H3Ph3 DMF
-
DMF
67
a Reaction conditions: [1a]:[2a]:[Rh-cat]:[ligand]:[Cu(OAc)2]
)
0.5:0.5:0.005:0.02:0.025 (in mmol), in solvent (2.5 mL) under air. b GC
yield based on the amount of 1a used. Value in parentheses indicates
yield after purification.
as well as photophysical and optoelectronic applications.10 The
results obtained for the reactions of these 2-substituted benzoic acids
as well as heteroarene carboxylic acids and dicarboxylic acids are
described herein.
(3) Pd: (a) Fujiwara, Y.; Moritani, I.; Danno, S.; Teranishi, S. J. Am. Chem.
Soc. 1969, 91, 7166. (b) Shue, R. S. J. Chem. Soc., Chem. Commun. 1971, 1510.
(c) Dams, M.; De Vos, D. E.; Celen, S.; Jacobs, P. A. Angew. Chem., Int. Ed.
2003, 42, 3512. (d) Yokota, T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am. Chem.
Soc. 2003, 125, 1476. (e) Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004,
69, 1221. (f) Stahl, S. S Angew. Chem., Int. Ed 2004, 43, 3400, and references
therein. (g) Yamada, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2005, 70, 5471.
(h) Stahl, S. S. Science 2005, 309, 1824. (i) Beck, E. M; Grimster, N. P; Hatley,
R; Gaunt, M. J J. Am. Chem. Soc. 2006, 128, 2528. Rh: (j) Matsumoto, T.;
Yoshida, H. Chem. Lett. 2000, 1064. (k) Matsumoto, T; Periana, R. A; Taube,
D. J.; Yoshida, H. J. Catal. 2002, 206, 272. Ru: (l) Weissman, H.; Song, X.;
Milstein, D. J. Am. Chem. Soc. 2001, 123, 337.
Results and Discussion
In an initial attempt to carry out the desired coupling,
N-phenylanthranilic acid (1a, 0.5 mmol) was treated with
diphenylacetylene (2a, 0.5 mmol) under conditions similar to
those employed for the coupling of benzoic acid with 2a.5a,b In
the presence of [{Cp*RhCl2}2] (0.005 mmol) and Cu(OAc)2
(monohydrate, 0.025 mmol) in DMF at 120 °C (bath temper-
ature) under air, 8-(N-phenylamino)-3,4-diphenylisocoumarin
(3a) was formed in 41% yield (entry 1 in Table 1, Cp* ) η5-
pentamethylcyclopentadienyl). In contrast to the case with either
2-methyl- or 2-phenylbenzoic acid,5b no 1:2 coupling product
was detected, and 51% of 2a was recovered. Interestingly, when
the reaction was carried out in o-xylene, 2a was completely
consumed to give 3a in 94% yield (entry 2).
Meanwhile, the use of another rhodium catalyst system,
[{RhCl(cod)}2]/C5H2Ph4, which was effective for the oxidative
coupling of salicylaldehydes with alkynes,5d dramatically af-
fected the reaction (C5H2Ph4 ) 1,2,3,4-tetraphenyl-1,3-cyclo-
pentadiene). Thus, the reaction with this catalyst in DMF
proceeded through double C-H bond cleavage and decarboxy-
lation to afford 4-(1,2-diphenylethenyl)-9H-carbazole (4a) in
79% yield along with a minor amount of 3a (18%) (entry 4).
(4) For recent reviews concerning C-H bond functionalization, see: (a)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (b) Kakiuchi, F.; Murai, S.
Top. Organomet. Chem. 1999, 3, 47. (c) Jia, C.; Kitamura, T.; Fujiwara, Y.
Acc. Chem. Res. 2001, 34, 633. (d) Kakiuchi, F.; Murai, S. Acc. Chem. Res.
2002, 35, 826. (e) Miura, M.; Nomura, M. Top. Curr. Chem. 2002, 219, 211. (f)
Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (g) Kakiuchi,
F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (h) Sigman, M. S.; Schults,
M. Org. Biomol. Chem. 2004, 2, 2551. (i) Miura, M.; Satoh, T. In Handbook of
C-H Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005; Vol. 1, p
223. (k) Conley, B. L.; Tenn, W. J., III; Young, K. J. H.; Ganesh, S. K.; Meier,
S. K.; Ziatdinov, V. R.; Mironov, O.; Oxgaard, J; Gonzales, J.; Goddard, W. A.,
III; Periana, R. A. J. Mol. Catal. A 2006, 251, 8. (l) Satoh, T.; Miura, M. J.
Synth. Org. Chem. 2006, 64, 1199. (m) Godula, K.; Sames, D. Science 2006,
312, 67. (n) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. (o) Jun, C.-H.; Jo,
E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869. (p) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. ReV. 2007, 107, 174. (q) Kalyani, D.; Sanford, M. S. Top.
Organomet. Chem. 2007, 24, 85. (r) Satoh, T.; Miura, M. Top. Organomet. Chem.
2007, 24, 61. (s) Ackermann, L. Top. Organomet. Chem. 2007, 24, 35. (t)
Kakiuchi, F. Top. Organomet. Chem. 2007, 24, 1. (u) Herrerias, C. I.; Yao, X.;
Li, Z.; Li, C.-J. Chem. ReV. 2007, 107, 2546. (v) Park, Y. J.; Park, J.-W.; Jun,
C.-H. Acc. Chem. Res. 2008, 41, 222. (w) Ferreira, E. M.; Zhang, H.; Stoltz,
B. M. Tetrahedron 2008, 64, 5987. (x) Mori, A.; Sugie, A. Bull. Chem. Soc.
Jpn. 2008, 81, 548. (y) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem.
Res. 2008, 41, 1013. (z) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(5) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (b) Ueura, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362. (c) Uto, T.; Shimizu, M.; Ueura,
K.; Tsurugi, H.; Satoh, T.; Miura, M. J. Org. Chem. 2008, 73, 298. (d) Shimizu,
M.; Tsurugi, H.; Satoh, T.; Miura, M. Chem. Asian J. 2008, 3, 881. (e) Umeda, N.;
Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47, 4019.
(6) Oxidative annulation with internal alkynes: (a) Lim, S.-G.; Lee, J. H.;
Moon, C. W.; Hong, J.-B.; Jun, C.-H. Org. Lett. 2003, 5, 2759. (b) Wu, Y.-T.;
Huang, K.-H.; Shin, C.-C.; Wu, T.-C. Chem.-Eur. J. 2008, 14, 6697. (c) Li, L.;
Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414. (d) Stuart,
D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 16474.
(8) (a) Nitta, K.; Yamamoto, Y.; Inoue, T.; Hyodo, T. Chem. Pharm. Bull.
1966, 14, 363. (b) Okazaki, M.; Yagi, N.; Wakizaka, Y. Yuki Gosei Kagaku
Kyokaishi 1968, 26, 155. (c) Nakajima, S.; Kawai, K.-I.; Yamada, S.; Sawai, Y.
Agr. Biol. Chem. 1976, 40, 811. (d) Nozawa, K.; Yamada, M.; Tsuda, Y.; Kawai,
K.-I.; Nakajima, S. Chem. Pharm. Bull. 1981, 29, 2689.
(9) Similar 4-ethenylcarbazoles were produced via Pd-catalyzed coupling of
N-aryl-3-iodoanilines with alkynes: Zhao, J; Larock, R. C. J. Org. Chem. 2006,
71, 5340.
(10) For recent examples, see: (a) Kuwahara, A.; Nakano, K.; Nozaki, K. J.
Org. Chem. 2005, 70, 413. (b) Lie´gault, B.; Lee, D.; Huestis, M. P.; Stuart,
D. R.; Fagnou, K. J. Org. Chem. 2008, 73, 5022. (c) Tsang, W. C. P.; Munday,
R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7603.
(d) Jordan-Hore, J. A; Johansson, C. C. C.; Gulias, M; Beck, E. M.; Gaunt,
M. J. J. Am. Chem. Soc. 2008, 130, 16184. For review, see: (e) Kno¨lker, H.-J.;
Reddy, K. R. Chem. ReV. 2002, 102, 4303.
(7) For recent example, see: (a) Rossi, R.; Carpita, A.; Bellina, F.; Stabile,
P.; Mannina, L. Tetrahedron 2003, 59, 2067. (b) Yao, T.; Larock, R. C. J. Org.
Chem. 2003, 68, 5936. (c) Mali, R. S.; Babu, K. N. J. Org. Chem. 1998, 63,
2488, and references cited therein.
J. Org. Chem. Vol. 74, No. 9, 2009 3479