strategy for the synthesis of ꢀ-hydroxy piperidines 4 and a
transmetalation approach to allow selective access to each
diastereomer. Ultimately, we exemplify our methodology
with a five-step catalytic asymmetric synthesis of (+)-L-
733,060, which is half the length of the previous syntheses.6
We have previously reported a catalytic asymmetric protocol
for the Beak-style11 deprotonation of N-Boc pyrrolidine 1 using
s-BuLi in tandem with 0.1-0.3 equiv of (-)-sparteine.12 The
approach is only successful if a stoichiometric amount of an
additive is included to recycle and turnover the (-)-sparteine.
The optimum additive, a bis-i-Pr-bispidine, is not commercially
available and cannot be separated from the chiral ligand after
use (thus precluding reuse of the chiral ligand). To address these
two important limitations, we screened a range of commercially
available additives and ultimately discovered that lithiated
dimethylaminoethanol (LiDMAE13) worked well. Thus, lithia-
tion of N-Boc pyrrolidine 1 using 1.6 equiv of s-BuLi, 0.3 equiv
of (-)-sparteine and 1.3 equiv of LiDMAE (formed in situ by
lithiation of DMAE using an extra equivalent of s-BuLi) and
subsequent reaction with Me3SiCl delivered a 66% yield of
adduct (S)-5 of 88:12 er (Scheme 2). Notably, the (-)-sparteine
Scheme 1
Our approach to ꢀ-hydroxy piperidines 4 (Scheme 1)
comprises two key steps: (i) catalytic asymmetric deprotonation
of N-Boc pyrrolidine 1 using s-BuLi and substoichiometric
amounts of (-)-sparteine (in the presence of a stoichiometric
achiral additive) and subsequent trapping with an aldehyde to
give amino alcohols 2; (ii) ring expansion of amino alcohols 2
to the corresponding ꢀ-hydroxy piperidines 4 via formation and
ring-opening of an intermediate aziridinium ion 3 (R2 )
alkyl).7-9 Scheme 1 depicts the synthesis of ꢀ-hydroxy
piperidines 4 with (2S,3S) stereochemistry; other stereoiso-
mers of 4 would be available by changing the chiral ligand
(e.g., to a (+)-sparteine surrogate10) and/or the diastereose-
lectivity of the addition to the aldehyde. In this paper, we
report a new method for the catalytic asymmetric deproto-
nation step using a commercially available achiral additive,
implementation of the deprotonation-trapping-ring expansion
Scheme 2
(5) For syntheses of (+)-febrifugine, see: (a) Sieng, B.; Lozano Ventura,
O.; Bellosta, V.; Cossy, J. Synlett 2008, 1216. (b) Ashoorzadeh, A.; Caprio,
V. Synlett 2005, 346. (c) Katoh, M.; Matsune, R.; Nagase, H.; Honda, T.
Tetrahedron Lett. 2004, 45, 6221. (d) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-
P. Synlett 2003, 1663. (e) Ooi, H.; Urushibara, A.; Esumi, T.; Iwabuchi,
Y.; Hatakeyama, S. Org. Lett. 2001, 3, 953. (f) Taniguchi, T.; Ogasawara,
K. Org. Lett. 2000, 2, 3193. (g) Takeuchi, Y.; Azuma, K.; Takakura, K.;
Abe, H.; Harayama, T. Chem. Commun. 2000, 1643. (h) Kobayashi, S.;
can be easily separated from the DMAE since the DMAE can
be extracted into NaOH(aq).
14 This means that the chiral ligand
Ueno, M.; Suzuki, R.; Ishitani, H. Tetrahedron Lett. 1999, 40, 2175
.
(6) For syntheses of (+)-L-733,060, see: (a) Liu, R.-H.; Fang, K.; Wang,
B.; Xu, M.-H.; Lin, G.-Q. J. Org. Chem. 2008, 73, 3307. (b) Emmanuvel,
L.; Sudalai, A. Tetrahedron Lett. 2008, 49, 5736. (c) Cherian, S. K.; Kumar,
P. Tetrahedron: Asymmetry 2007, 18, 982. (d) Oshitari, T.; Mandai, T.
Synlett 2006, 3395. (e) Kandula, S. R. V.; Kumar, P. Tetrahedron:
Asymmetry 2005, 16, 3579. (f) Yoon, Y.-J.; Joo, J.-E.; Lee, K.-Y.; Kim,
Y.-H.; Oh, C.-Y.; Ham, W.-H. Tetrahedron Lett. 2005, 46, 739. (g) Huang,
P.-Q.; Liu, L.-X.; Wei, B.-G.; Ruan, Y.-P. Org. Lett. 2003, 5, 1927. (h)
Bhaskar, G.; Rao, B. V. Tetrahedron Lett. 2003, 44, 915. For synthesis of
(-)-L-733,060, see: (i) Takahashi, K.; Nakano, H.; Fujita, R. Tetrahedron
can be recovered and reused.
We verified that it is necessary to have both the lithium
alkoxide and the dimethlyamino group in the additive: use of
lithium ethoxide gave (S)-5 in 90:10 er but in only 33% yield,
indicating that there was no turnover of (-)-sparteine and use
of N,N-dimethyl-2-methoxyethylamine gave rac-5 (74% yield),
reflecting a fast background deprotonation by the s-BuLi/amino
ether complex (Scheme 2). Next, with a view to optimizing
Lett. 2005, 46, 8927
(7) Fuson, R. C.; Zirkle, C. L. J. Am. Chem. Soc. 1948, 70, 2760
(8) Cossy, J.; Dumas, C.; Michel, P.; Gomez Pardo, D. Tetrahedron
Lett. 1995, 36, 549
.
.
.
(11) Beak, P.; Kerrick, S. T.; Wu, S.; Chu, J. J. Am. Chem. Soc. 1994,
116, 3231.
(9) For selected examples, see: (a) Calvez, O.; Chiaroni, A.; Langlois,
N. Tetrahedron Lett. 1998, 39, 9447. (b) Cossy, J.; Dumas, C.; Gomez
Pardo, D. Eur. J. Org. Chem. 1999, 1693. (c) Cossy, J.; Mirguet, O.; Gomez
Pardo, D.; Desmurs, J.-R. Tetrahedron Lett. 2001, 42, 5705. (d) Lee, J.;
Hoang, T.; Lewis, S.; Weissm an, S. A.; Askin, D.; Volante, R. P.; Reider,
P. J. Tetrahedron Lett. 2001, 42, 6223. (e) Dechamps, I.; Gomez Pardo,
D.; Cossy, J. Synlett 2007, 263. (f) Drouillat, B.; Couty, F.; David, O.;
Evano, G.; Marrot, J. Synlett 2008, 1345. (g) Durrat, F; Vargas Sanchez,
(12) (a) McGrath, M. J.; O’Brien, P. J. Am. Chem. Soc. 2005, 127,
16378. (b) McGrath, M. J.; Bilke, J. L.; O’Brien, P. Chem. Commun. 2006,
2607. (c) Bilke, J. L.; O’Brien, P. J. Org. Chem. 2008, 73, 6452.
(13) For selected examples on the use of n-BuLi/LiDMAE in pyridine
lithiation, see: (a) Gros, P.; Fort, Y.; Queguiner, G.; Caube`re, P. Tetrahedron
Lett. 1995, 36, 4791. (b) Gros, P.; Fort, Y.; Caube`re, P. J. Chem. Soc.,
Perkin Trans. 1 1997, 3071. (c) Gros, P.; Fort, Y. Eur. J. Org. Chem. 2002,
3375. (d) Gros, P. C.; Doudouh, A.; Woltermann, C. Chem. Commun. 2006,
2673.
M.; Couty, F.; Evano, G.; Marrot, J. Eur. J. Org. Chem. 2008, 3286
.
(10) (a) Dearden, M. J.; Firkin, C. R.; Hermet, J.-P. R.; O’Brien, P.
J. Am. Chem. Soc. 2002, 124, 11870. (b) Dearden, M. J.; McGrath, M. J.;
O’Brien, P. J. Org. Chem. 2004, 69, 5789. (c) Dixon, A. J.; McGrath, M. J.;
O’Brien, P. Org. Synth. 2006, 83, 141. (d) O’Brien, P. Chem. Commun.
2008, 655.
(14) A solution of (-)-sparteine (10.0 mmol) and DMAE (33.3 mmol)
in Et2O (35 mL) was washed with 20% w/v NaOH(aq) solution (6 × 50
mL). Then, the Et2O layer was dried (Na2SO4) and evaporated under reduced
pressure to give pure (-)-sparteine (1H NMR spectroscopy).
1936
Org. Lett., Vol. 11, No. 9, 2009