Organic & Biomolecular Chemistry
Communication
Notes and references
1 Reviews: (a) K. Smith, A. Pelter and H. C. Brown, Borane
Reagents, Academic Press, London, 1988; (b) N. Miyaura
and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483;
(c) A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6722–6737;
(d) R. Barbeyron, E. Benedetti, J. Cossy, J.-J. Vasseur,
S. Arseniyadis and M. Smietana, Tetrahedron, 2014, 70,
8431–8452.
2 (a) K. Burgess and M. J. Ohlmeyer, Chem. Rev., 1991, 91,
1179–1191; (b) I. D. Gridnev, N. Miyaura and A. Suzuki,
J. Org. Chem., 1993, 58, 5351–5354; (c) S. Pereira and
M. Srebnik, Tetrahedron Lett., 1996, 37, 3283–3286;
(d) T. Ohmura, Y. Yamamoto and N. Miyaura, J. Am. Chem.
Soc., 2000, 122, 4990–4991; (e) T. Lee, C. Baik, I. Jung,
K. H. Song, S. Kim, D. Kim, S. O. Kang and J. Ko,
Organometallics, 2004, 23, 4569–4575.
Scheme 3
experiment.
A
proposed catalytic cycle and deuterium labeling
3 (a) S. Lee, D. Li and J. Yun, Chem. – Asian J., 2014, 9, 2440–
2443; (b) G. Zhu, W. Kong, H. Feng and Z. Qian, J. Org.
Chem., 2014, 79, 1786–1795.
4 (a) J. V. Obligacion, J. M. Neely, A. N. Yazdani, I. Pappa and
P. J. Chirik, J. Am. Chem. Soc., 2015, 137, 5855–5858;
(b) T. Xi and Z. Lu, ACS Catal., 2017, 7, 1181–1185;
(c) H. Ben-Daat, C. L. Rock, M. Flores, T. L. Groy,
A. C. Bowman and R. J. Trovitch, Chem. Commun., 2017, 53,
7333–7336.
5 (a) M. D. Greenhalgh and S. P. Thomas, Chem. Commun.,
2013, 49, 11230–11232; (b) M. Haberberger and S. Enthaler,
Chem. – Asian J., 2013, 8, 50–54; (c) M. Espinal-Viguri,
C. R. Woof and R. L. Webster, Chem. – Eur. J., 2016, 22,
11605–11608.
A proposed catalytic cycle for alkyne hydroboration can be
seen in Scheme 3. The active SIPrCu–H is formed in situ by
reaction with HBpin and reacts with the alkyne (2a) to form
the hydrocuprated intermediate.17 The organocopper inter-
mediate subsequently reacts with HBpin to generate the alke-
nylboron product (3) and the active catalyst. NMR study
showed that the alkynyl proton of 2a remained intact when
mixed with a stoichiometric amount of the catalyst 1,18 elimi-
nating the pathway to copper-acetylide complex formation
unlike Bertrand’s catalyst.9 Furthermore, the hydroboration of
deuterium-labeled phenylacetylene (2a-d) afforded
a (E)-
alkenyl product (3a-d) with high deuterium retention (99%).18
6 (a) D. Noh, H. Chea, J. Ju and J. Yun, Angew. Chem., Int. Ed.,
2009, 48, 6062–6064; (b) D. Noh, S. K. Yoon, J. Won,
J. Y. Lee and J. Yun, Chem. – Asian J., 2011, 6, 1967–1969;
(c) X. Feng, H. Jeon and J. Yun, Angew. Chem., Int. Ed.,
2013, 52, 3989–3992.
7 W. J. Jang, W. L. Lee, J. H. Moon, J. Y. Lee and J. Yun, Org.
Lett., 2016, 18, 1390–1393.
8 (a) H. Kim and J. Yun, Adv. Synth. Catal., 2010, 352, 1881–
1885; (b) H. Lee, B. Y. Lee and J. Yun, Org. Lett., 2015, 17,
764–766.
9 E. A. Romero, R. Jazzar and G. Bertrand, J. Organomet.
Chem., 2017, 829, 11–13.
10 T. Bai, Y. Yang and C. Han, Tetrahedron Lett., 2017, 58,
1523–1527.
11 CCDC 1908511 (1)† contain the supplementary crystallo-
graphic data for this paper.
Conclusions
In summary, we prepared a new NHC–Cu-thienyl carboxylate
complex, SIPr–CuTC and successfully applied it for the stereo-
selective hydroboration of terminal alkynes with pinacolborane
or 1,8-naphthalenediaminatoborane as the hydroborane reagent.
The new copper complex was air-stable and storable at ambient
temperatures without any precautions and could be activated by
hydroboranes without additional base. Moreover, the protocol
could be easily scaled to gram-scale quantities with a low catalyst
loading of 0.1 mol% for the formation of alkenylboron com-
pounds with high atom-efficiency. We expect the SIPr–CuTC
complex to expand the utility of the hydroboration process; more
catalytic applications of the complex are underway.
Conflicts of interest
12 J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya,
W. S. Hwang and I. J. B. Lin, Chem. Rev., 2009, 109, 3561–
3598.
There are no conflicts to declare.
13 (a) L. A. Goj, E. D. Blue, S. A. Delp, T. B. Gunnoe,
T. R. Cundari, A. W. Pierpont, J. L. Petersen and
P. D. Boyle, Inorg. Chem., 2006, 45, 9032–9045;
(b) L. A. Goj, E. D. Blue, S. A. Delp, T. B. Gunnoe,
T. R. Cundari and J. L. Petersen, Organometallics, 2006,
25, 4097–4104.
Acknowledgements
This study was supported by National Research Foundation
of Korea (NRF) grants (No. 2016R1A2B4011719 and
2019R1A2C2005706), funded by the Korean government (MEST).
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem.