R. N. Ram, N. Kumar / Tetrahedron Letters 49 (2008) 799–802
801
calculation,7a the halogen effect is more important in the
Acknowledgment
Diels–Alder reaction of halofurans than with halo-substi-
tuted cyclic or acyclic hydrocarbon dienes, the maximum
effect occurring when the halogen atom is linked to one of
the termini of the diene. Accordingly, 2-halofurans have
been found to be more reactive than 3-halofurans. However,
experimental support for the theoretical predictions through
an intramolecular competition between a halofuran diene
and a non-halogenated furano diene or a non-furano halod-
iene has not been reported. The fortuitous availability of the
‘twin’ dienes 4(l–n) led us to investigate the Diels–Alder
reaction of these compounds. Thus, chlorobifuryl 4l having
a chlorofuran ring and a non-halogenated furan ring, on
heating with dimethyl acetylenedicarboxylate (DMAD) at
100 °C for 10 h gave exclusively furylchlorophenol 5l
(Scheme 2) in 74% yield by cycloaddition to the chlorofuran
ring. The structure of 5l was also supported by X-ray crys-
tallography.20 Similarly, 2-styryl-3-chlorofuran 4m and 2-
crotyl-3-chlorofuran 4n (predominantly as the E isomer)
having a chlorofurano diene and a chloro-substituted exo-
cyclic diene moiety, under similar conditions, yielded exclu-
sively styrylchlorophenol 5m and crotylchlorophenol 5n,
in 65% and 62% yields, respectively,21 showing the specific
participation of the chlorofurano diene in the Diels–Alder
reaction.22
One of us (N.K.) is thankful to the Council of Scientific
and Industrial Research, New Delhi for a research
fellowship.
References and notes
1. Reviews covering metal–halogen exchange and cross-coupling of
halofurans: (a) Schro¨ter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61,
2245–2267; (b) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209–215; (c)
Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong,
S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955–2020.
2. Recent references for applications in natural product synthesis: (a)
Miller, A. K.; Hughes, C. C.; Kennedy-Smith, J. J.; Gradl, S. N.;
Trauner, D. J. Am. Chem. Soc. 2006, 128, 17057–17062; (b) Young, I.
S.; Williams, J. L.; Kerr, M. A. Org. Lett. 2005, 7, 953–955; (c) Zhang,
Y.; Herndon, J. W. J. Org. Chem. 2002, 67, 4177–4185; (d) Arroyo,
Y.; Rodrıguez, J. F.; Sanz-Tejedor, M. A.; Santos, M. Tetrahedron
Lett. 2002, 43, 9129–9132.
3. Synthesis of flavor chemicals by thiosubstitution: Alvarez-Ibarra, C.;
Quiroga, M. L.; Toledano, E. Tetrahedron 1996, 52, 4065–4078.
4. Recent references for applications in natural product synthesis and
other applications: (a) Tseng, J.-C.; Chen, J.-H.; Luh, T.-Y. Synlett
2006, 1209–1212; (b) Burke, M. D.; Berger, E. M.; Schreiber, S. L. J.
Am. Chem. Soc. 2004, 126, 14095–14104; (c) Mee, S. P. H.; Lee, V.;
Baldwin, J. E.; Cowley, A. Tetrahedron 2004, 60, 3695–3712; (d)
Schultz-Fademrecht, C.; Zimmermann, M.; Froehlich, R.; Hoppe, D.
Synlett 2003, 1969–1972; (e) Karpov, A. S.; Rominger, F.; Muller, T.
¨
In conclusion, the present method for the synthesis of
2,4-disubstituted 3-chlorofurans uses readily available
starting materials. It is quite general for the synthesis of a
variety of 2,4-disubstituted 3-chlorofurans with an alkyl,
alkenyl, aryl or heteroaryl substituent at C-2 and a primary
or secondary alkyl or benzylic substituent at C-4. In partic-
ular, this method would be well suited to a diversity
oriented synthesis of 2,3-disubstituted furans with a methyl
group at C-4, a structural feature of many natural and
bioactive synthetic furans.1c,6a–d,14d,23 These chlorofurans
possessing a chlorine atom in a sterically encumbered
position offer a formidable challenge to those interested in
cross-coupling reactions. While our results show the pre-
dominance of the halogen effect in furan Diels–Alder reac-
tions, conformational and steric effects might also be
contributing factors. Further studies with more suitable
substrates are required for a more precise conclusion.
J. J. J. Org. Chem. 2003, 68, 1503–1511; (f) Milkiewicz, K. L.; Neagu,
I. B.; Parks, D. J.; Lu, T. Tetrahedron Lett. 2003, 44, 7341–7343; (g)
Yasuhara, A.; Suzuki, N.; Sakamoto, T. Chem. Pharm. Bull. 2002, 50,
143–145; (h) Meng, D.; Danishefsky, S. J. Angew. Chem., Int. Ed.
1999, 38, 1485–1488.
5. (a) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem.
2003, 68, 2861–2873; (b) Padwa, A.; Crawford, K. R.; Rashatasak-
hon, P.; Rose, M. J. Org. Chem. 2003, 68, 2609–2617; (c) Hooper, M.
W.; Hartwig, J. F. Organometallics 2003, 22, 3394–3403; (d)
Yamamoto, T.; Nishiyama, S.; Watanabe, M. Jap. Patent Applica-
tion: JP 2000-71048 20000309, 2000; Chem. Abstr. 2000, 133, 362700.
6. Recent reviews: (a) Kirsch, S. F. Org. Biomol. Chem. 2006, 4, 2076–
2080; (b) Brown, R. C. D. Angew. Chem., Int. Ed. 2005, 44, 850–852;
(c) Hou, X. L.; Yang, Z.; Wong, H. N. C. In Progress in Heterocyclic
Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon: Oxford,
2003; Vol. 15, pp 167–205; (d) Koenig, B. Sci. Synth. 2002, 9, 183–
285; Recent references: (e) Barluenga, J.; Fanlo, H.; Lopez, S.; Florez,
J. Angew. Chem., Int. Ed. 2007, 46, 4136–4140; (f) Peng, L.; Zhang,
X.; Ma, M.; Wang, J. Angew. Chem., Int. Ed. 2007, 46, 1905–1908; (g)
Oh, C. H.; Park, H. M.; Park, D. I. Org. Lett. 2007, 9, 1191–
1193.
7. (a) Pieniazek, S. N.; Houk, K. N. Angew. Chem., Int. Ed. 2006, 45,
1442–1445; (b) Padwa, A.; Kenneth, R.; Crawford, K. R.; Straub, C.
S.; Pieniazek, S. N.; Houk, K. N. J. Org. Chem. 2006, 71, 5432–5439;
(c) Crawford, K. R.; Bur, S. K.; Straub, C. S.; Padwa, A. Org. Lett.
2003, 5, 3337–3340.
8. Review: (a) Kappe, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron
1997, 53, 14179–14233; Recent references: (b) Zhang, H.; Boonsom-
bat, J.; Padwa, A. Org. Lett. 2007, 9, 279–282; (c) Sparks, S. M.;
Chen, C.-L.; Martin, S. F. Tetrahedron 2007, 63, 8619–8635; (d)
Lauchli, R.; Shea, K. J. Org. Lett. 2006, 8, 5287–5289.
9. Reviews: (a) Lee, H.-K.; Chan, K.-F.; Hui, C.-W.; Yim, H.-K.; Wu,
X.-W.; Wong, H. N. C. Pure Appl. Chem. 2005, 77, 139–143; (b)
Lipshutz, B. H. Chem. Rev. 1986, 86, 795–819. Recent references:(c)
Guo, H.; Doherty, G. A. O. Angew. Chem., Int. Ed. 2007, 46, 5206–
5208; (d) Breton, P.; Hergenrother, P. J.; Hida, T.; Hodgson, A.;
Judd, A. S.; Kraynack, E.; Kym, P. R.; Lee, W.-C.; Loft, M. S.;
Yamashita, M.; Martin, S. F. Tetrahedron 2007, 63, 5709–5729.
R2
O
R2
Cl
Cl
DMAD
R1
R1
100 oC, 10 h
O
MeO2C CO2Me
4(l-n)
, R2 = H
O
l: R1
=
Ph
R2 Cl
R1
, R2 = H
m: R1 =
n: R1 =
HO
CO2Me
CO2Me
Me
, R2 = Ph
5(l-n)
Scheme 2. Diels–Alder reaction of chlorofurans 4(l–n).