H. C. Shen et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1623–1627
1627
b
a
O
OMe
O
O
OMe
O
OMe
O
H
O
O
O
O
OH
e-g
O
HO
O
OH
3
10
OH
H
c, d
O
N
OH
O
O
O
O
O
O
HO
CO2H
2h
11
Scheme 6. Reagents and conditions: (a) cat. OsO4, NMO, CH2Cl2, rt, 3 days; (b) NaIO4, acetone, water, rt, 4 days, 99% over two steps; (c) NaBH4, MeOH, rt, 1 h, then HCl, 49%;
(d) LiOH, THF, MeOH, H2O, rt, 4 h, 90%; (e) 6, HATU, pyridine, DMF, rt, 16 h, 19%; (f) LiOH, THF, H2O, rt, 16 h; (g) HCl, THF, 40 °C, 16 h, 53% over two steps.
OH
a
b-e
H
N
O
O
O
OMe
O
OMe
H
N
N
O
O
O
O
HO
O
O
HO
CO2H
10
2i
12
Scheme 7. Reagents and conditions: (a) MeNH2ÁHCl, NaBH(OAc)3, Et3N, THF/acetic acid (4:1), 16 h, rt, 37%; (b) LiOH, THF, MeOH, H2O, rt, 1 h, 99%; (c) 6, HATU, pyridine, DMF,
rt, 16 h, 30%; (d) LiOH, THF, H2O, rt, 16 h; (e) HCl, THF, 40 °C, 16 h, 12% over two steps.
K.; Wang, J. J. Am. Chem. Soc. 2006, 128, 11916; (c) Singh, S. B.; Herath, K. B.;
Wang, J.; Tsou, N.; Ball, R. G. Tetrahedron Lett. 2007, 48, 5429; (d) Zhang, C.;
Ondeyka, J.; Zink, D. L.; Burgess, B.; Wang, J.; Singh, S. B. Chem. Commun. 2008,
The replacement of cyclohexenone of platensimycin with a lac-
tone or lactam involved the oxidative degradation of the double
bond that produced aldehyde acid 10 (Scheme 6). The reduction
of aldehyde to alcohol, followed by an acid-mediated lactone for-
mation allowed the formation of lactone intermediate 11, which
was subsequently converted to product 2h. In a similar fashion,
the sequential reductive amination of compound 10 and lactam
formation yielded intermediate 12 during the synthesis of analog
2i (Scheme 7).
In conclusion, several platensimycin analogs were prepared to
test the hypothesis whether the enone moiety was essential for
platensimycin’s biological activity. The SAR strongly suggests that
the conformation of the enone moiety is crucial in positioning
the ketone carbonyl group to interact with A309 of FabF. Of all
the analogs prepared, those bearing the ketone moiety and similar
conformation, such as compound 2d and 2g, were generally quite
active in the saFabF2 antisense assay but none were more active
than platensimycin.
5034; (e) Young, K. et al Antimicrob. Agents Chemother. 2006, 50, 519; (f) Kodali,
S.; Galgoci, A.; Young, K.; Painter, R.; Silver, L. L.; Herath, K. B.; Singh, S. B.; Cully,
D.; Barrett, J. F.; Schmatz, D.; Wang, J. J. Biol. Chem. 2005, 280, 1669.
2. (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006, 45, 7086;
(b) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed.
2007, 46, 3942; (c) Zou, Y.; Chen, C.-H.; Taylor, C. D.; Foxman, B. M.; Snyder,
B. B. Org. Lett. 2007, 9, 1825; (d) Nicolaou, K. C.; Tang, Y.; Wang, J. Chem.
Commun. 2007, 1922; (e) Li, P.; Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc.
2007, 129, 9534; (f) Lalic, G.; Corey, E. J. Org. Lett. 2007, 9, 4921; (g)
Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2007, 46, 8074; (h) Nicolaou,
K. C.; Pappo, D.; Tsang, K. Y.; Gibe, R.; Chen, D. Y.-K. Angew. Chem., Int. Ed.
2008, 47, 944; (i) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E.
Angew. Chem., Int. Ed. 2008, 47, 4009.
3. (a) Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner,
C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008, 130.
ASAP; (b) Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J.
Am. Chem. Soc. 2007, 129, 14850; (c) Nicolaou, K. C.; Lister, T.; Denton, R. M.;
Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2007, 46, 4712.
4. As shown in Ref. 3a, all-carbon cage analogs carbaplatensimycin and
adamantaplatensimycin both gave about threefold less of activity with respect
to platensimycin.
5. Mandai, T.; Yamakawa, T. Synlett 2000, 862.
6. Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
References and notes
7. Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 1386.
8. For analog 2g: 1H NMR (acetone-d6, 500 MHz) d 10.6 (1H, br s), 9.11 (1H, s), 7.65
(1H, d, J = 6.0 Hz), 6.48 (1H, d, J = 6.0 Hz), 5.79 (1H, s), 4.44 (1H, s), 2.66 (2H, m),
2.38 (4H, m), 2.10 (7H, m), 1.89 (3H, s), 1.70 (1H, m), 1.41 (3H, s), 1.24 (3H, s);
LCMS m/z: 456.19 (M+1), 478.21 (M+Na). For analog 2h: 1H NMR (acetone-d6,
500 MHz) d 10.2 (1H, br s), 8.96 (1H, s), 7.68 (1H, br s), 6.31 (1H, bs), 4.50 (1H, d,
J = 11.0 Hz), 4.38 (1H, s), 3.88 (1H, d, J = 11.0 Hz), 2.63 (2H, m), 2.32 (5H, m), 2.05
(5H, m), 1.99 (3H, s), 1.68 (1H, m), 1.53 (1H, m), 1.38 (3H, s); LCMS m/z: 446.52
(M+1).
1. (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter,
R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.;
Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.;
Basilio, A.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.;
Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.;
Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358; (b) Singh,
S. B.; jayasuriya, H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.; Zink, D. L.; Tsou, N.
N.; Ball, R. G.; Basilio, Á.; Genilloud, O.; Diez, M. T.; Vicente, F.; Palaez, F.; Young,