importantly, the incorporation of metals endows desirable
properties to the resulting metallodendrimers. This new family
of dendrimers has been extensively explored as potential
functional materials in catalysis,4 as biological mimetics,5 and
in photo- and electrochemistry.6 Recently, dendritic metallo-
cycles have received considerable attention because of their
potential application in the recognition and delivery of guests
incorporated within their cavities.7 However, the precise control
of the size and the shape of the metallodendrimers remains a
challenge.
Synthesis of Six-Component Metallodendrimers
via [3 + 3] Coordination-Driven Self-Assembly
Hai-Bo Yang,*,† Brian H. Northrop,‡ Yao-Rong Zheng,‡
Koushik Ghosh,‡ Matthew M. Lyndon,§
David C. Muddiman,§ and Peter J. Stang*,‡
Shanghai Key Laboratory of Green Chemistry and Chemical
Processes, Department of Chemistry, East China Normal
UniVersity, 3663 North Zhongshan Road, Shanghai, China
200062, Department of Chemistry, UniVersity of Utah, 315
South 1400 East, Room 2020, Salt Lake City, Utah 84112,
and W. M. Keck FT-ICR Mass Spectrometry Laboratory and
Department of Chemistry, North Carolina State UniVersity,
Raleigh, North Carolina 27695
Coordination-driven self-assembly8 has been demonstrated
to be a powerful and facile approach to the construction of
polygons and polyhedra9 with well-designed shapes, sizes, and
symmetry. By employing such a strategy, we have previously
constructed a series of functionalized metallacycles10 including
well-defined metallodendrimers11 with various sizes and shapes.
For example, by combining predesigned 120° angular dendritic
hbyang@chem.ecnu.edu.cn; stang@chem.utah.edu
ReceiVed January 12, 2009
(3) (a) Newkome, G. R.; Moorefield, F.; Vo¨gtle, F. Dendritic Molecules:
Concepts, Synthesis, Properties; VCH: Weinheim, Germany, 1996. (b) Constable,
E. C. Chem. Commun. 1997, 1073–1080. (c) Zeng, F.; Zimmerman, S. C. Chem.
ReV. 1997, 97, 1681–1712. (d) Newkome, G. R.; He, E.; Moorefield, C. N. Chem.
ReV. 1999, 99, 1689–1746. (e) Bosman, A. W.; Janssen, H. M.; Meijer, E. W.
Chem. ReV. 1999, 99, 1665–1688. (f) Balzani, V.; Campagna, S.; Denti, G.;
Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26–34. (g) Gorman,
C. B.; Smith, J. C. Acc. Chem. Res. 2001, 34, 60–71. (h) Astruc, D. Acc. Chem.
Res. 2000, 33, 287–298. (i) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.;
Yeung, L. K. Acc. Chem. Res. 2001, 34, 181–190. (j) Selby, H. D.; Roland,
B. K.; Zheng, Z. Acc. Chem. Res. 2003, 36, 933–944. (k) Huck, W. T. S.; van
Veggel, F. C. J. M.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1996, 35,
1213–1215. (l) Enomoto, M.; Aida, T. J. Am. Chem. Soc. 1999, 121, 874–875.
(m) Hwang, S.-H.; Shreiner, C. D.; Moorefield, C. N.; Newkome, G. R. New
J. Chem. 2007, 119, 2–1217. (n) Constable, E. C. Chem. Soc. ReV. 2007, 36,
246–253.
A new class of 120° dendritic di-Pt(II) acceptor subunits has
been designed and synthesized, from which six-component
hexagonal metallodendrimers were easily formed with 120°
dendritic dipyridine donors via [3 + 3] coordination-driven
self-assembly. The structures of all metallodendrimers are
confirmed by multinuclear NMR, ESI-TOF-MS/ESI-FTMS,
and elemental analysis. MMFF force-field simulations indi-
cates that all metallodendrimers have a hexagonal ring with
an internal radius of approximately 1.4 nm.
(4) (a) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991–3023. (b) Becker,
J. J.; Gagne´, M. R. Acc. Chem. Res. 2004, 37, 798–804. (c) Astruc, D.; Ornelas,
C.; Ruiz, J. Acc. Chem. Res. 2008, 41, 841–856. (d) Bonomi, R.; Selvestrel, F.;
Lombardo, V.; Sissi, C.; Polizzi, S.; Mancin, F.; Tonellato, U.; Scrimin, P. J. Am.
Chem. Soc. 2008, 130, 15744–15745.
(5) (a) Enomoto, M.; Aida, T. J. Am. Chem. Soc. 1999, 121, 874–875. (b)
Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney,
P. A. J. Am. Chem. Soc. 2005, 127, 17902–17909.
(6) (a) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701–1710.
(b) Jiang, H.; Lee, S. J.; Lin, W. Org. Lett. 2002, 4, 2149–2152. (c) Choi, M.-
S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed. 2004, 43, 150–
158. (d) Mo, Y.-J.; Jiang, D.-L.; Uyemura, M.; Aida, T.; Kitagawa, T. J. Am.
Chem. Soc. 2005, 127, 10020–10027. (e) Maury, O.; Bozec, H. L. Acc. Chem.
Res. 2005, 38, 691–704. (f) Hwang, S.-H.; Moorefield, C. N.; Newkome, G. R.
Chem. Commun. 2008, 37, 2543–2557.
(7) (a) Gorman, C. B.; Smith, J. C. J. Am. Chem. Soc. 2000, 122, 9342–
9343. (b) Wang, P.; Moorefield, C. N.; Newkome, G. R. Org. Lett. 2004, 6,
1197–1200.
Since the pioneering work by Newkome et al.1 and Balzani
et al.2 in the early 1990s, metallodendrimers3 have evolved to
be one of the most attractive fields within supramolecular
chemistry. Compared to the synthesis of conventional dendrim-
ers that rely heavily on carbon-carbon or carbon-heteroatom
bond formation, metal-donor interactions have been shown to
function as the key growth steps in the construction of
metallodendrimers. The highly efficient formation of coordina-
tion bonds offers considerable synthetic advantages such as
fewer steps, fast and facile construction of the final products,
and inherently self-correcting, defect-free assembly. More
(8) (a) Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502–518. (b)
Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853–908. (c)
Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972–983. (d) Schwab,
P. F. H.; Levin, M. D.; Michl, J. Chem. ReV. 1999, 99, 1863–1934. (e) Caulder,
D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975–982. (f) Gianneschi,
N. C.; Masar, M. S., III.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825–837. (g)
Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759–771. (h)
Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38,
369–378. (i) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc
2005, 38, 349–358. (j) Steel, P. J. Acc. Chem. Res. 2005, 38, 243–250.
(9) (a) Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura,
K. Nature (London) 1995, 378, 469–471. (b) Olenyuk, B.; Levin, M. D.;
Whiteford, J. A.; Shield, J. E.; Stang, P. J. J. Am. Chem. Soc. 1999, 121, 10434–
10435. (c) Olenyuk, B.; Whiteford, J. A.; Fechtenkotter, A.; Stang, P. J. Nature
(London) 1999, 398, 796–799. (d) Takeda, N.; Umemoto, K.; Yamaguchi, K.;
Fujita, M. Nature (London) 1999, 398, 794–794. (e) Fujita, M.; Fujita, N.; Ogura,
K.; Yamaguchi, K. Nature (London) 1999, 400, 52–55. (f) Davis, A. V.;
Raymond, K. N. J. Am. Chem. Soc. 2005, 127, 7912–7919. (g) Hiraoka, S.;
Sakata, Y.; Shionoya, M. J. Am. Chem. Soc. 2008, 130, 10058–10059. (h)
Hiraoka, S.; Harano, K.; Shiro, M.; Ozawa, Y.; Yasuda, N.; Toriumi, K.;
Shionoya, M. Angew. Chem., Int. Ed. 2006, 45, 6488–6491.
† East China Normal University.
‡ University of Utah.
§ North Carolina State University.
(1) Newkome, G. R.; Moorefield, F.; Vo¨gtle, F.; Baker, G. R.; Johnson, A. L.;
Behara, R. K. Angew. Chem., Int. Ed. Engl. 1991, 30, 1176–1178.
(2) Denti, G.; Serroni, S.; Campagana, S.; Ricevuto, V.; Balzani, V. Inorg.
Chim. Acta 1991, 182, 127–129.
3524 J. Org. Chem. 2009, 74, 3524–3527
10.1021/jo900067v CCC: $40.75 2009 American Chemical Society
Published on Web 04/03/2009