Communication
phenylethynyl chloride 1a (0.40 mmol) in DCE (0.40 mL) were added
BrettPhosAuCl (6.24 mg, 0.0080 mmol) and AgNTf2 (3.11 mg,
0.0080 mmol) subsequently. The mixture was stired at 50 °C for
10 min. Nitrile/H2O (0.11 mL, 14:1) was then added dropwise over
20 minutes. The resulting mixture was stirred at 50 °C for 23.5 h.
The mixture was cooled to room temperature, and purified by silica
gel column chromatography, eluting with petroleum ether/ethyl
acetate (10:1 to 4:1), to give ꢀ-chlorogenated enamides 3.
intermediate 5 is generated, then followed a hydrolysis and pro-
ton transfer to afford (Z)-ꢀ-halogenated enamide 3 and regen-
erate the Au(I) catalyst. We believe the terminal halo group is
critical for the Ritter reaction of haloalkynes with nitriles. As the
inductively electron-withdrawing nature of X makes the alkyne
gold complex 4/4′ more polarized and hence more reactive to
react with nitriles.
Acknowledgments
We are grateful for the financial support from the National Nat-
ural Science Foundation of China (No. 21502182, 21202154).
Keywords: Halogenated enamide · Ritter reaction · Gold
catalysis · Stereoselectivity · Chloroalkyne
[1] a) R. Matsubara, S. Kobayashi, Acc. Chem. Res. 2008, 41, 292–301; b) D. R.
Carbery, Org. Biomol. Chem. 2008, 6, 3455–3460; c) K. Gopalaiah, H. B.
Kagan, Chem. Rev. 2011, 111, 4599–4657; d) T. Shono, Y. Matsumura, K.
Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, T. Aoki, J. Am. Chem. Soc.
1982, 104, 6697–6703.
[2] a) E. R. Ashley, E. G. Cruz, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125,
15000–15001; b) G. J. Roff, R. C. Lloyd, N. J. Turner, J. Am. Chem. Soc.
2004, 126, 4098–4099; c) M. L. Crawley, I. Goljer, D. J. Jenkins, J. F. Mehl-
mann, L. Nogle, R. Dooley, P. E. Mahaney, Org. Lett. 2006, 8, 5837–5840;
d) T. A. Cernak, J. L. Gleason, J. Org. Chem. 2008, 73, 102–110.
Scheme 1. Proposed mechanism for Au-catalyzed Ritter reaction of halo-
alkynes with nitriles.
[3] a) H. Zhou, W. A. van der Donk, Org. Lett. 2001, 3, 593–596; b) P. N.
Collier, I. Patel, R. J. K. Taylor, Tetrahedron Lett. 2001, 42, 5953–5954;
c) D. J. Aitken, S. Faure, S. Roche, Tetrahedron Lett. 2003, 44, 8827–8830;
d) J. Singh, D. R. Kronenthal, M. Schwinden, J. D. Godfrey, R. Fox, E. J.
Vawter, B. Zhang, T. P. Kissick, B. Patel, O. Mneimne, M. Humora, C. G.
Papaioannou, W. Szymanski, M. K. Y. Wong, C. K. Chen, J. E. Heikes, J. D.
DiMarco, J. Qiu, R. P. Deshpande, J. Z. Gougoutas, R. H. Mueller, Org. Lett.
2003, 5, 3155–3158.
[4] a) F. I. Guseinov, N. A. Yudina, R. N. Burangulova, T. Y. Ryzhikova, R. Z.
Valiullina, Chem. Heterocycl. Compd. 2002, 38, 496–497; b) S. Karur, S.
Kotti, X. Xu, J. F. Cannon, A. Headley, G. Li, J. Am. Chem. Soc. 2003, 125,
13340–13341; c) D. Chen, L. Guo, J. Liu, S. Kirtane, J. F. Cannon, G. Li, Org.
Lett. 2005, 7, 921–924; d) G. Li, S. R. S. Saibabu Kotti, C. Timmons, Eur. J.
Org. Chem. 2007, 27452758; e) T. Wu, G. Yin, G. Liu, J. Am. Chem. Soc.
2009, 131, 16354–16355; f) M. Yamagishi, K. Nishigai, T. Hata, H. Urabe,
Org. Lett. 2011, 13, 4873–4875; g) M. Yamagishi, K. Nishigai, A. Ishii, T.
Hata, H. Urabe, Angew. Chem. Int. Ed. 2012, 51, 6471–6474; Angew. Chem.
2012, 124, 6577; h) T. Kamon, D. Shigeoka, T. Tanaka, T. Yoshimitsu, Org.
Biomol. Chem. 2012, 10, 2363–2365; i) M. R. Li, H. Y. Yuan, B. Z. Zhao, F. S.
Liang, J. P. Zhang, Chem. Commun. 2014, 50, 2360–2363.
[5] a) L. E. Overman, L. A. Clizbe, R. L. Freerks, C. K. Marlowe, J. Am. Chem.
Soc. 1981, 103, 2807–2810; b) J. Qian, Y. Liu, J. Zhu, B. Jiang, Z. Xu, Org.
Lett. 2011, 13, 4220–4222; c) T. Xu, G. Liu, Org. Lett. 2012, 14, 5416–5418;
d) C. Jonasson, A. Horvath, J.-E. Backvall, J. Am. Chem. Soc. 2000, 122,
9600–9609; e) B. Maji, S. Lakhdar, H. Mayr, Chem. Eur. J. 2012, 18, 5732–
5740; f) X. Ji, H. Huang, W. Wu, H. Jiang, J. Am. Chem. Soc. 2013, 135,
5286–5289; g) M. C. Reddy, R. Manikandan, M. Jeganmohan, Chem. Com-
mun. 2013, 49, 6060–6063; h) L. H. Liao, H. Zhang, X. D. Zhao, ACS Catal.
2018, 8, 6745–4749.
[6] a) H. Zhao, M. Wang, W. Su, M. Hong, Adv. Synth. Catal. 2010, 352, 1301–
1306; b) Y. Obora, Y. Shimizu, Y. Ishii, Org. Lett. 2009, 11, 5058–5061.
[7] a) X. Ji, Z. Duan, Y. Qian, J. Han, G. Li, Y. Pan, RSC Adv. 2012, 2, 5565–
5570; b) H. Mei, J. Han, G. Li, Y. Pan, RSC Adv. 2011, 1, 429–434; c) X. Ji,
H. Mei, Y. Qian, J. Han, G. Li, Y. Pan, Synthesis 2011, 22, 3680–3683; d) S.
Raghavan, S. Mustafa, B. Sridhar, J. Org. Chem. 2009, 74, 4499–4507.
[8] a) Y. Cai, X. Liu, J. Jiang, W. Chen, L. Lin, X. Feng, J. Am. Chem. Soc. 2011,
133, 5636–5639; b) S.-X. Huang, K. Ding, Angew. Chem. Int. Ed. 2011, 50,
7734–7738; Angew. Chem. 2011, 123, 7878; c) Y. Cai, X. Liu, Y. Hui, J.
Jiang, W. Wang, W. Chen, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2010, 49,
6160–6163; Angew. Chem. 2010, 122, 6296; d) J.-F. Wei, Z.-G. Chen, W.
Conclusions
In conclusion, we developed an efficient and stereoselective
protocol for the synthesis (Z)-ꢀ-halogenated enamide via gold
catalyzed Ritter reaction. In the presence of 2 mol-% Brett-
PhosAuCl and 2 mol-% AgNTf2, a variety of (Z)-ꢀ-halogenated
enamide bearing different functional groups can be prepared
in excellent to good yields. The current study is focusing on
the synthesis of biologically important N-containing molecules
using this method.
Experimental Section
General Information: 1H and 13C NMR Spectra were recorded on
a Bruker AC-500 FT spectrometer (500 MHz and 100 MHz, respec-
tively) using tetramethylsilane as internal reference. Chemical shifts
(δ) and coupling constants (J) were expressed in ppm and Hz,
respectively. IR spectra were recorded on a Perkin-Elmer 2000 FTIR
spectrometer. High resolution mass spectra were recorded on a
LC-TOF spectrometer (Micromass). the UV detection was monitored
at 254 nm. Melting points were uncorrected.
General Procedure for the Gold Catalyzed Ritter Reaction of
Haloalkynes with Acetonitrile (Table 2): To
a solution of
haloalkyne 1 (0.40 mmol) in acetonitrile (0. 14 mL) were added
BrettPhosAuCl (6.24 mg, 0.0080 mmol) and AgNTf2 (3.11 mg,
0.0080 mmol) subsequently. The mixture was stired at 50 °C for
10 min. MeCN/H2O (0.37 mL, 50:1) was then added dropwise over
20 minutes. The resulting mixture was stirred at 50 °C for 23.5 h.
The mixture was cooled to room temperature, and purified by silica
gel column chromatography, eluting with petroleum ether/ethyl
acetate (10:1 to 4:1), to give ꢀ-halogenated enamides 3.
General Procedure for the Gold Catalyzed Ritter Reaction of
Phenylethynyl Chloride with Nitriles (Table 3): To a solution of
Eur. J. Org. Chem. 0000, 0–0
3
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim