Organometallics
Note
1
white solid. H NMR spectroscopic data are in good agreement with
REFERENCES
■
those reported in literature.2d
(1) (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (b) Chen, X.;
Engle, K. M.; Wang, C.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48,
5094. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010,
110, 624. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(e) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew.
Chem., Int. Ed. 2012, 51, 10236. (f) Arockiam, P. B.; Bruneau, C.;
Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(2) Homocoupling: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q.
J. Am. Chem. Soc. 2006, 128, 6790. (b) Hull, K. L.; Lanni, E. L.; Sanford,
M. S. J. Am. Chem. Soc. 2006, 128, 14047. (c) Oi, S.; Sato, H.; Sugawara,
S.; Inoue, Y. Org. Lett. 2008, 10, 1823. (d) Guo, X.; Deng, G.; Li, C.-J.
2,2′-{5,5′-Bis(methoxycarbonyl)-1,1′-biphenyl-2,2′-diyl}-
bispyridine (3f). The general procedure was followed with 427 mg
(2.00 mmol) of 2-{4-(methoxycarbonyl)phenyl}pyridine (1f) and the
reaction was carried out under a 10 mA constant current condition for
4 h. Column chromatography (silica gel 60N, 5:1 hexane/EtOAc, then
2:1 hexane/EtOAc) afforded 257 mg of 3f (0.605 mmol, 60% yield) as a
pale brown solid: δ 3.97 (s, 6H), 6.70 (d, J = 7.6 Hz, 2H), 7.05 (ddd,
J = 7.6, 4.9, 0.9 Hz, 2H), 7.34 (td, J = 7.6, 1.8 Hz, 2H), 7.59 (d, J = 8.1 Hz,
2H), 8.10 (dd, J = 8.1, 1.8 Hz, 2H), 8.21 (d, J = 1.8 Hz, 2H), 8.35 (ddd,
J = 4.9, 1.8, 0.9 Hz, 2H); 13C NMR (100 MHz, CDCl3): 52.3, 121.8,
124.3, 129.2, 130.3, 130.4, 132.4, 135.5, 139.2, 144.0, 149.2, 156.6,
166.7; HRMS (ESI-TOF) calcd for [M + H]+ (C26H21N2O4) m/z
425.1501. Found 425.1520.
2,2′-(5,5′-Dibromo-1,1′-biphenyl-2,2′-diyl)bispyridine (3g).
The general procedure was followed with 468 mg (2.00 mmol) of
2-(4-bromophenyl)pyridine (1g) and the reaction was carried out under
a 20 mA constant current condition for 2 h. Column chromatography
(silica gel 60N, 1:1 hexane/EtOAc) afforded 231 mg of 3g (0.496 mmol,
50% yield) as a pale brown solid: δ 6.70 (d, J = 7.9 Hz, 2H), 7.05 (ddd,
J = 7.4, 4.9, 0.9 Hz, 2H), 7.34−7.39 (m, 4H), 7.56 (dd, J = 8.3, 2.0 Hz,
2H), 7.62 (d, J = 2.0 Hz, 2H), 8.29 (d, J = 4.9 Hz, 2H); 13C NMR
(100 MHz, CDCl3): 121.6, 122.7, 124.1, 131.2, 131.7, 133.6, 135.5,
138.7, 140.3, 149.1, 156.5; HRMS (ESI-TOF) calcd for [M + H]+
(C22H15Br2N2) m/z 464.9602. Found 464.9604.
́
Adv. Synth. Catal. 2009, 351, 2071. (e) Ackermann, L.; Novak, P.;
Vicente, R.; Pirovano, V.; Potukuchi, H. K. Synthesis 2010, 2245.
(f) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green
Chem. 2011, 13, 3075. (g) Pintori, D. G.; Greaney, M. F. Org. Lett. 2011,
13, 5715.
(3) Cross coupling: (a) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011,
111, 1215. (b) Li, R. L.; Lu, W. Organometallics 2006, 25, 5973.
(c) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (d) Dwight, T. A.;
Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
(e) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(f) Xia, J.-B.; You, S.-L. Organometallics 2007, 26, 4869. (g) Li, B.-J.;
Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115.
(h) Brasche, G.; García-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10,
2207. (i) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130,
9254. (j) Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You,
J. J. Am. Chem. Soc. 2010, 132, 1822. (k) Zhao, X.; Yeung, C. S.; Dong, V.
M. J. Am. Chem. Soc. 2010, 132, 5837. (l) He, C.-Y.; Fan, S.; Zhang, X. J.
Am. Chem. Soc. 2010, 132, 12850. (m) Li, Z.; Ma, L.; Xu, J.; Kong, L.;
Wu, X.; Yao, H. Chem. Sci. 2012, 48, 3763. (n) Nishino, M.; Hirano, K.;
Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 6993. (o) Wang, S.;
Liu, W.; Cen, J.; Liao, J.; Huang, J.; Zhan, H. Tetrahedron Lett. 2014, 55,
1589.
2,2′-(5,5′-Diphenyl-1,1′-biphenyl-2,2′-diyl)bispyridine (3h).
The general procedure was followed with 463 mg (2.00 mmol) of
2-(4-phenylphenyl)pyridine (1h) and the reaction was carried out under
a 10 mA constant current condition for 4 h. Column chromatography
(silica gel 60N, 4:1 hexane/EtOAc, 1:1 hexane/EtOAc, then 1:2
hexane/EtOAc) afforded 299 mg of 3h (0.649 mmol, 65% yield) as a
1
white solid. H NMR spectroscopic data are in good agreement with
those reported in literature.2e
2,2′-(5,5′-Dimethyl-1,1′-biphenyl-2,2′-diyl)bispyridine (3i).
The general procedure was followed with 339 mg (2.00 mmol) of
2-(4-methylphenyl)pyridine (1i) and the reaction was carried out under
a 20 mA constant current condition for 1 h. Column chromatography
(silica gel 60N, 1:10 hexane/ether) afforded 224 mg of 3i (0.666 mmol,
(4) (a) Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano,
S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131,
11310. (b) Aiso, H.; Kochi, T.; Mutsutani, H.; Tanabe, T.; Nishiyama,
S.; Kakiuchi, F. J. Org. Chem. 2012, 77, 7718.
(5) Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007,
349, 292.
1
66% yield) as a white solid. H NMR spectroscopic data are in good
agreement with those reported in literature.2d,e
(6) Homocoupling: Kirste, A.; Hayashi, S.; Schnakenburg, G.;
Malkowsky, I. M.; Stecker, F.; Fischer, A.; Fuchigami, T.; Waldvogel,
S. R. Chem.Eur. J. 2011, 17, 14164.
2,2′-(1,1′-Biphenyl-2,2′-diyl)bispyridine (3j). The general pro-
cedure was followed with 311 mg (2.00 mmol) of 2-phenylpyridine (1j)
and the reaction was carried out under a 20 mA constant current
condition for 1 h. Column chromatography (silica gel 60N, 1:1 hexane/
EtOAc, then EtOAc) afforded 193 mg of 3j (0.626 mmol, 62% yield) as a
(7) Cross coupling: (a) Kirste, A.; Schnakenburg, G.; Stecker, F.;
Fischer, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.
(b) Morofuji, T.; Shimizu, A.; Yoshida, J.-i. Angew. Chem., Int. Ed. 2012,
51, 7259.
1
white solid. H NMR spectroscopic data are in good agreement with
those reported in literature.2a
(8) These reaction conditions were employed in our previous
palladium-catalyzed C−H iodination using I2 by electrochemical anodic
oxidation.
(9) Racowski, J. M.; Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2011,
133, 18022.
(10) (a) Miller, L. L.; Kujawa, E. P.; Campbell, C. B. J. Am. Chem. Soc.
1970, 92, 2821. (b) Miller, L. L.; Watkins, B. F. J. Am. Chem. Soc. 1976,
98, 1515. (c) Shono, T.; Matsumura, Y.; Katoh, S.; Ikeda, K.; Kamada, T.
Tetrahedron Lett. 1989, 30, 1649. (d) Kataoka, K.; Hagiwara, Y.;
Midorikawa, K.; Suga, S.; Yoshida, J. Org. Process Res. Dev. 2008, 12,
1130.
(11) Formation of the homocoupling product by oxidation of a doubly-
chelated Pd(II) species: Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc.
2007, 129, 15142.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H and 13C{1H} NMR spectra and IR data of new compounds.
This material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported, in part, by a Grant-in-Aid for Scientific
Research on Priority Areas “Organic Synthesis Based on
Reaction Integration” from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
6707
dx.doi.org/10.1021/om500957a | Organometallics 2014, 33, 6704−6707