3282 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10
Comin et al.
δ 170.66, 168.91, 158.18, 152.14, 138.06, 132.98, 131.30, 129.05,
120.34, 118.59, 116.14, 114.49, 88.43, 88.39, 80393, 65.66, 64.82,
63.22, 34.42, 32.01, 24.53, 21.45, 19.96; FABMS m/z (relative
intensity): 449 (MH+, 85), 448 (M+•, 100). Anal. Calcd for
C27H28O6 ·0.3H2O: C, 71.49; H, 6.35. Found: C, 71.30; H, 6.18.
tert-Butyl 4-(4-[2-(4-Methylphenyl)ethynyl]phenoxy)butanoate
(4c). This compound was prepared similarly as described for 4a
from tert-butyl 4-bromobutanoate (302 mg, 2.43 mmol) and phenol
3 (253 mg, 2.21 mmol). After combi-flash column chromatography
(silica gel; hexanes/ethyl acetate, 9:1) 351 mg (83% yield) of pure
4c was obtained as a yellowish solid: mp 68 °C. FTIR (neat) 1723
Acknowledgment. This research was supported in part by
the Intramural Research Program of the NIH, National Cancer
Institute, Center for Cancer Research. We also thank Drs. James
A. Kelley and Chris Lai for HRMS measurements and Dr. Dina
M. Sigano for help with the calculations of log P values and
assembling the manuscript.
Supporting Information Available: 1H and 13C spectra for
1a-c. This material is available free of charge via the Internet at
1
cm-1; H NMR (400 MHz, CDCl3) δ 7.45 (dm, J ) 8.3 Hz, 2 H,
References
Ph), 7.40 (dm, J ) 7.8 Hz, 2 H, Ph), 7.14 (dm, J ) 7.8 Hz, 2 H,
Ph), 6.85 (dm, J ) 8.3 Hz, 2 H, Ph), 4.01 (t, J ) 6.2 Hz, 1 H,
H-4), 2.43 (t, J ) 7.3 Hz, 1 H, H-2), 2.36 (s, 3 H, -CH3), 2.07 (m,
2 H, H-3), 1.45 (s, 9 H, -C(CH3)3); 13C NMR (100 MHz, CDCl3)
δ 172.39, 158.78, 137.92, 132.90, 131.27, 129.02, 120.47, 115.52,
114.45, 88.65, 88.14, 80.34, 31.91, 28.07, 24.66, 21.43; FABMS
m/z (relative intensity): 351 (MH+, 16), 350 (M+•, 41). Anal. Calcd
for C23H26O3 ·0.1H2O: C, 78.48; H, 7.50. Found: C, 78.32; H, 7.47.
(2-[(4-Methoxyphenoxy)methyl]-4-(methylethylidene)-5-oxo-
2-2,3-dihydrofuryl)methyl 4-(4-[2-(4-Methylphenyl)ethynyl]phe-
noxy)butanoate (8c). tert-Butyl ester 4c (342 mg, 0.98 mmol) was
treated in the same manner as described for 4a, and the corre-
sponding free acid was reacted with 6 (202 mg, 0.69 mmol) as
described for the synthesis of 8a to give 224 mg (57% yield) of 8c
(1) Rhee, S. G. Regulation of phosphoinositide-specific phospholipase C.
Annu. ReV. Biochem. 2001, 70, 281–312.
(2) Griner, E. M.; Kazanietz, M. G. Protein kinase C and other diacylg-
lycerol effectors in cancer. Nat. ReV Cancer 2007, 7, 281–294.
(3) For a recent review, see the following: Steinberg, S. F. Structural basis
of protein kinase C isoform function. Physiol. ReV. 2008, 88, 1341–
1378.
(4) Duan, D.; Sigano, D. M.; Kelley, J. A.; Lai, C.; Lewin, N. E.; Kedei,
N.; Peach, M. L.; Lee, J.; Abeyweera, T. P.; Rotenberg, S. A.; Kim,
H.; Kim, Y. H.; El Kazzouli, S.; Chung, J.-U.; Young, H. A.; Young,
M.; Baker, A.; Colburn, N. H.; Haimovitz-Friedman, A.; Truman, J.-
P.; Parrish, D. A.; Deschamps, J. R.; Perry, N. A.; Surawski, R. J.;
Blumberg, P. M.; Marquez, V. E. Conformationally constrained
analogues of diacylglycerol (DAG). 29. Cells sort DAG-lactone
chemical zip codes to produce diverse and selective biological
activities. J. Med. Chem. 2008, 51, 5198–5220.
1
as a white solid: mp 117 °C; FTIR (neat) 1744 cm-1; H NMR
(400 MHz, CDCl3) δ 7.44-7.39 (m, 4 H, Ph), 7.14 (dm, J ) 7.9
Hz, 2 H, Ph), 6.82 (m, 6 H, Ph), 4.34 (ABq, J ) 11.8 Hz, 2 H,
-CH2OCOCH2CH2CH2OAr), 3.99 (t, J ) 6.0 Hz, 2 H, H-4), 3.98
(ABq, J ) 9.5 Hz, 2 H, -CH2OPMP), 3.76 (s, 3 H, -OCH3), 2.96
(dm, J ) 16.4 Hz, 1 H, H-3a), 2.75 (dm, J ) 16.4 Hz, 1 H, H-3b),
2.55 (t, J ) 7.3 Hz, 2 H, H-2), 2.36 (s, 3 H, -CH3), 2.28 (br s, 3
H, -CH3), 2.09 (m, 2 H, H-3), 1.87 (s, 3 H, -CH3); 13C NMR
(100 MHz, CDCl3) δ 172.55, 168.63, 158.61, 154.43, 152.28,
151.82, 138.00, 132.96, 131.30, 129.05, 120.45, 118.44, 115.61,
114.68, 114.44, 88.60, 88.23, 79.41, 70.22, 66.52, 65.88, 55.69,
32.88, 30.53, 24.60, 24.45, 21.47, 19.97. FABMS m/z (relative
intensity): 569 (MH+, 100), 568 (M+•, 86). Anal. Calcd for
C35H36O7 ·0.4H2O: C, 73.05; H, 6.45. Found: C, 72.85; H, 6.38.
[2-(Hydroxymethyl)-4-(methylethylidene)-5-oxo-2-2,3-dihy-
drofuryl]methyl 4-(4-[2-(4-Methylphenyl)ethynyl]phenoxy)bu-
tanoate (1c). Starting from 8c, compound 1c was obtained as
described for 1a in 50% yield: mp 115-116 °; FTIR (neat) 3428,
(5) Marquez, V. E.; Blumberg, P. M. Synthetic diacylglycerols (DAG)
and DAG-lactones as activators of protein kinase C (PK-C). Acc.
Chem. Res. 2003, 36, 434–443.
(6) Malolanarasimhan, K.; Kedei, N.; Sigano, D. M.; Kelley, J. A.; Lai,
C. C.; Lewin, N. E.; Surawski, R. J.; Pavlyukovets, V. A.; Garfield,
S. H.; Wincovitch, S.; Blumberg, P. M.; Marquez, V. E. Conforma-
tionally constrained analogues of diacylglycerol (DAG). 27. Modula-
tion of membrane translocation of protein kinase C (PKC) isozymes
alpha and delta by diacylglycerol lactones (DAG-lactones) containing
rigid-rod acyl groups. J. Med. Chem. 2007, 50, 962–978.
(7) Philosof-Mazor, L.; Volinsky, R.; Comin, M. J.; Lewin, N. E.; Kedei,
N.; Blumberg, P. M.; Marquez, V. E.; Jelinek, R. Self-assembly and
lipid interactions of diacylglycerol lactone derivatives studied at the
air/water interface. Langmuir 2008, 24, 11043–11052.
(8) Veschamb, H.; Dauphin, G.; Kergomar, A. Transmission of electronic
effects in molecules of trans 4-hydroxystilbenes and 4-hydroxy tolanes.
Bull. Soc. Chim. Fr. 1967, 8, 2846–2854.
(9) Thorand, S.; Krause, N. J. Improved procedures for the palladium-
catalyzed coupling of terminal alkynes with aryl bromides (Sonogashira
coupling). J. Org. Chem. 1998, 63, 8551–8553.
1
1714 cm-1; H NMR (400 MHz, CDCl3) δ 7.44-7.38 (m, 4 H,
(10) Hajduk, P. J.; Sheppard, G.; Nettesheim, D. G.; Olejniczak, E. T.;
Shuker, S. B.; Meadows, R. P.; Steinman, D. H.; Carrera, G. M.;
Marcotte, P. A.; Severin, J.; Walter, K.; Smith, H. E.; Simmer, R.;
Holzman, T. F.; Morgan, D. W.; Davidsen, S. K.; Summers, J. B.;
Fesik, S. W. Discovery of potent nonpeptide inhibitors of stromelysin
using SAR by NMR. J. Am. Chem. Soc. 1997, 119, 5818–5827.
(11) Schmidt, U.; Lieberknecht, A.; Griesser, H.; Talbiersky, J. Synthesis
of peptide alkaloids. 5. New method for synthesis of ansa
peptides. Amino acids and peptides. 34. J. Org. Chem. 1982, 47, 3261–
3264.
(12) Rueeger, H.; Gerspacher, M.; Buehlmayer, P.; Rigollier, P.; Yamagu-
chi, Y.; Schmidlin, T.; Whitebread, S.; Nuesslein-Hildesheim, B.; Nick,
H.; Cricione, L. Discovery and SAR of potent, orally available and
brain-penetrable 5,6-dihydro-4H-3-thia-1-aza-benzo[e]azulen- and 4,5-
dihydro-6-oxa-3-thia-1-aza-benzo[e]azulen derivatives as neuropeptide
YY5 receptor antagonists. Bioorg. Med. Chem. Lett. 2004, 14, 2451–
2457.
(13) Patel, M.; Goswami, A.; Chu, L.; Donovan, M. J.; Nanduri, V.;
Goldberg, S.; Johnston, R.; Siva, P. J.; Nielsen, B.; Fan, J. Y.; He,
W. X.; Shi, Z. P.; Wang, K. W.; Eiring, R.; Cazzulino, D.; Singh, A.;
Mueller, R. Enantioselective microbial reduction of substituted ac-
etophenones. Tetrahedron: Asymmetry 2004, 15, 1247–1258.
(14) Mehta, A.; Jaouhari, R.; Benson, T. J.; Douglas, K. T. Improved
efficiency and selectivity in peptide synthesis: use of triethylsilane as
a carbocation scavenger in deprotection of t-butyl esters and t-
butoxycarbonyl-protected sites. Tetrahedron Lett. 1992, 33, 5441–
5444.
Ph), 7.13 (dm, J ) 7.8 Hz, 2 H, Ph), 6.84 (dm, J ) 8.9 Hz, 2 H,
Ph), 4.23 (ABq, J ) 11.8 Hz, 2 H, -CH2OCOCH2CH2CH2OAr),
4.00 (t, J ) 6.0 Hz, 2 H, H-4), 3.65 (m, 2 H, -CH2OH), 2.80 (dm,
J ) 16.5 Hz, 1 H, H-3a), 2.62 (dm, J ) 16.5 Hz, 1 H, H-3b), 2.56
(t, J ) 7.3 Hz, 2 H, H-2), 2.35 (s, 3 H, -CH3), 2.25 (br s, 3 H,
-CH3), 2.10 (m, 2 H, H-3), 1.85 (s, 3 H, -CH3); 13C NMR (100
MHz, CDCl3) δ 172.91, 168.90, 158.57, 151.94, 138.01, 132.95,
131.29, 129.04, 120.41, 118.70, 115.75, 114.43, 88.55, 88.25, 80.97,
66.54, 65.52, 64.80, 32.09, 30.55, 24.57, 24.43, 21.45, 19.96;
FABMS m/z (relative intensity): 463 (MH+, 100), 462 (M+•, 84).
Anal. Calcd for C28H30O6 ·0.4H2O: C, 71.64; H, 6.61. Found: C,
71.58; H, 6.41.
[2-(Hydroxymethyl)-4-(methylethylidene)-5-oxo-2-2,3-dihy-
drofuryl]methyl 4-[2-(4-Methylphenyl)ethynyl]benzoate (2). This
compound was prepared by the same methodology as described in
ref 7. Pure 2 (260 mg, 76%) was obtained as a yellowish solid: mp
1
167-168 °C; FTIR (neat) 3469, 2214, 1723 cm-1; H NMR (400
MHz, CDCl3) δ 7.96 (m, 2 H, Ph), 7.57 (m, 2 H, Ph), 7.44 (m, 2
H, Ph), 7.18 (m, 2 H, Ph), 4.58 (mAB, 2 H, -Ph-CO2CH2-), 3.76
(ABq, J ) 12.1 Hz, 2 H, HOCH2-), 2.90-2.70 (mAB, 2 H, H-4a,b),
2.38 (s, 3 H, -CH3), 2.25 (t, J ) 2.0 Hz, 3 H, -CH3), 1.86 (s, 3
H, -CH3); 13C NMR (100 MHz, CDCl3) δ 169.10, 165.78, 151.67,
139.09, 131.62, 131.46, 129.61, 129.18, 128.82, 128.23, 119.00,
93.12, 87.88, 81.45, 66.32, 64.78, 32.25, 24.55, 21.53, 19.91.
FABMS m/z (relative intensity): 405 (MH+, 47). Anal. Calcd for
C25H24O5 ·0.3H2O: C, 73.26; H, 6.05. Found: C, 73.21; H, 5.99.
(15) Lampe, J. W.; Hughes, P. F.; Biggers, C. K.; Smith, S. H.; Hu, H.
Total synthesis of (-)- and (+)-balanol. J. Org. Chem. 1996, 61, 4572–
4581.