4932
A. Maresca et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4929–4932
14. Nishimori, I.; Minakuchi, T.; Kohsaki, T.; Onishi, S.; Takeuchi, H.; Vullo, D.;
(iv) Selectivity issues: except for the sulfonates 6 and 7 which
are much better b-CA than
ited much better the host (
Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2007, 17, 3585.
15. (a) Bennett, J. E.; Izumikawa, K.; Marr, K. A. Antimicrob. Agents Chemother. 2004,
48, 1773; (b) Fidel, P. L. Jr.; Vazquez, J. A.; Sobel, J. D. Clin. Microbiol. Rev. 1999,
12, 80; (c) Tsai, H. F.; Krol, A. A.; Sarti, K. E.; Bennett, J. E. Antimicrob. Agents
Chemother. 2006, 50, 1384.
a
-CA inhibitors, all sulfonamides inhib-
a-class) over the pathogenic (b-class en-
zyme). Thus, the main finding of this study, except for the medium-
weak mtCA 1/3 inhibitors belonging to the sulfonamide class that
we evidenced, is that sulfonates may be better binding and also
selectively inhibit the pathogenic over the host CAs. Another impor-
tant aspect is related to the good inhibitory activity of prontosil
against mtCA 1 and 3, although this compound is also not a selec-
tive CAI for the pathogenic over the host enzymes. Work is war-
ranted to confirm these finding on different classes of sulfonates
and to design compounds based on the prontosil scaffold as lead.
In conclusion, we report here a series of diazenylbenzenesulf-
onamides which have been obtained from sulfanilamide or meta-
nilamide by diazotization followed by coupling with phenols or
amines. The compounds were tested for the inhibition of the b-
CAs encoded by the genes Rv1284 and Rv3273 of M. tuberculosis.
Several low micromolar inhibitors of the two enzymes were de-
tected with the best inhibitor being prontosil (KIs of 126–
148 nM). Some sulfonates tested for the same interaction showed
excellent mtCA inhibitory activity and selectivity for the inhibition
of the pathogenic over host enzymes. Inhibition of pathogenic b-
CAs may thus lead to the development of antiinfectives with a
new mechanism of action, devoid of resistance problems encoun-
tered with classical antibiotics
16. Hanage, W. P.; Fraser, C.; Tang, J.; Connor, T. R.; Corander, J. Science 2009, 324,
1454.
17. Pai, M.; Turpin, R.; Garey, K. Antimicrob. Agents Chemother. 2007, 51, 35.
18. (a) Supuran, C. T.; Scozzafava, A.; Conway, J. Carbonic Anhydrase—Its Inhibitors
and Activators; CRC Press: Boca Raton, New York, London, 2004. p 1-363; (b)
Supuran, C. T.; Scozzafava, A.; Casini, A. Development of Sulfonamide Carbonic
Anhydrase Inhibitors. In Carbonic anhydrase—Its inhibitors and activators;
Supuran, C. T., Scozzafava, A., Conway, J., Eds.; CRC Press: Boca Raton, 2004;
pp 67–147; (c) Supuran, C. T. Carbonic Anhydrases as Drug Targets—General
Presentation. In Drug Design of Zinc–Enzyme Inhibitors: Functional, Structural,
and Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken,
2009; pp 15–38.
19. (a) Sassetti, C. M.; Boyd, D. H.; Rubin, E. J. Mol. Microbiol. 2003, 48, 77; (b) Betts,
J. C.; Lukey, P. T.; Robb, L. C.; McAdam, R. A.; Duncan, K. Mol. Microbiol. 2002, 43,
717.
20. Miltner, E.; Daroogheh, K.; Mehta, P. K.; Cirillo, S. L.; Cirillo, J. D.; Bermudez, L. E.
Infect. Immun. 2005, 73, 4214.
21. Carta, F.; Pothen, B.; Maresca, A.; Tiwari, M.; Singh, V.; Supuran, C. T. Chem. Biol.
Drug Des. 2009, 74, 196.
22. (a) Mandell, G. L.; Petri, W. A., Jr. Antimicrobial Agents. In Goodman and
Gilman’s The Pharmacological Basis of Therapeutics; Hardman, J. G., Limbird, L. E.,
Molinoff, P. B., Ruddon, R. W., Goodman and Gilman, A., Eds.; McGraw-Hill:
New York, 1996; pp 1057–1072; (b) Domagk, G. Dtsch. Med. Wocheschr. 1935,
61,
250; (c) Buttle, G. A. H.; Gray, W. H.; Stephenson, D. Lancet 1936, 1, 1286;
(d) Colebrook, L.; Kenny, H. Lancet 1936, 1, 1279.
23. Mandell, G. L.; Petri, W. A., Jr. Drugs used in the Chemotherapy of Tuberculosis,
Mycocatreium avium Complex Disease and Leprosy. In Goodman and Gilman’s
The Pharmacological Basis of Therapeutics; Hardman, J. G., Limbird, L. E.,
Molinoff, P. B., Ruddon, R. W., Goodman Gilman, A., Eds., 9th ed.; McGraw-
Hill: New York, 1996; pp 1155–1174.
Acknowledgements
24. Aminonenzenesulfonamide (sulfanilamide
1 or metanilamide 2) (0.20 g,
1.0 equiv) was dissolved in a freshly prepared 40% solution of concentrated
hydrochloric acid in deionised water (3.0 ml) and then cooled down to ꢀ5 °C. A
2.3 M aqueous solution of NaNO2 (1.2 equiv) was added dropwise and the
mixture was kept stirring at the same temperature until a persistent pale
yellow solution, for sulfanilamide, or pale-orange solution, for metanilamide,
was formed (5–10 min). The solution was used freshly prepared for the
This research was financed in part by a grant of the 6th Frame-
work Programme (FP) of the European Union (DeZnIT project), and
by a grant of the 7th FP of EU (Metoxia project).
References and notes
coupling reactions. For example,
a
solution of diazotized sulfanilamide/
solution of N,N-
metanilamide was added dropwise to
3
a
dimethylaminobenzene (0.14 g, 0.15 ml, 1.0 equiv) in a saturated aqueous
solution of AcONa (3.0 ml) at ꢀ5 °C. The solution turned bright orange
immediately and a precipitate was formed. The mixture was stirred at the
same temperature for 15 min, then warmed at room temperature and the pH
adjusted to 7. The solid was collected by filtration, washed with a minimum
amount of H2O, dried under vacuo and purified by silica gel column
chromatography eluting with 5% MeOH in dichloromethane to give 4d as an
orange solid in 79% yield. 4-(40-Dimethylaminophenyl)diazenylbenzene-
sulfonamide 4d: mp260–261 °C silica gel TLC Rf 0.38 (MeOH/DCM 5%); mmax
(KBr) cmꢀ1, 1604 (Aromatic), 1520 (N@N), 1370 (SO2–N); dH (400 MHz, DMSO-
d6) 3.13 (6H, s, 2 ꢁ CH3), 6.90 (2H, d, J 9.2, 2 ꢁ 30-H), 7.48 (2H, s, SO2NH2,
exchange with D2O), 7.87 (2H, d, J 9.2, 2 ꢁ 20-H), 7.93 (2H, d, J 7.8, 2 ꢁ 2-H),
7.99 (2H, d, J 7.8, 2 ꢁ 3-H); dC (100 MHz, DMSO-d6) 155.9 (ipso), 154.8 (ipso),
145.0 (ipso), 144.0 (ipso), 128.5 (C-2), 127.0 (C-3), 123.6, 113.2, 30.8 (2 ꢁ CH3).
25. Briganti, F.; Pierattelli, R.; Scozzafava, A.; Supuran, C. T. Eur. J. Med. Chem. 1996,
31, 1001.
1. Dye, C. Nat. Rev. Microbiol. 2009, 7, 81.
2. Ginsberg, A. M. Semin. Respir. Crit. Care Med. 2008, 29, 552.
3. Showalter, H. D.; Denny, W. A. Tuberculosis (Edinb) 2008, 88, S3.
4. Tomioka, H.; Tatano, Y.; Yasumoto, K.; Shimizu, T. Exp. Rev. Resp. Med. 2008, 2,
455.
5. Cole, S. T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.
V.; Eiglmeier, K.; Gas, S.; Barry, C. E., III; Tekaia, F.; Badcock, K.; Basham, D.;
Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.;
Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.;
Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M. A.; Rajandream, M. A.;
Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J. E.;
Taylor, K.; Whitehead, S.; Barrell, B. G. Nature 1998, 393, 537.
6. (a) Suarez Covarrubias, A.; Larsson, A. M.; Hogbom, M.; Lindberg, J.; Bergfors, T.;
Bjorkelid, C.; Mowbray, S. L.; Unge, T.; Jones, T. A. J. Biol. Chem. 2005, 280,
18782; (b) Suarez Covarrubias, A.; Larsson, A. M.; Hogbom, M.; Lindberg, J.;
Bergfors, T.; Bjorkelid, C.; Mowbray, S. L.; Unge, T.; Jones, T. A. J. Biol. Chem.
2006, 281, 4993.
26. Khalifah, R. G.. J. Biol. Chem. 1971, 246, 2561. An Applied Photophysics stopped-
flow instrument has been used for assaying the CA catalysed CO2 hydration
activity. Phenol red (at a concentration of 0.2 mM) has been used as indicator,
working at the absorbance maximum of 557 nm, with 10–20 mM Hepes (pH
7. Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Innocenti, A.; Supuran, C.
T. J. Med. Chem. 2009, 52, 3116.
8. Minakuchi, T.; Nishimori, I.; Vullo, D.; Scozzafava, A.; Supuran, C. T. J. Med.
Chem. 2009, 52, 2226.
7.5, for a-CAs) or TRIS (pH 8.3 for b-CAs) as buffers, and 20 mM Na2SO4 (for a-
CAs) or 20 mM NaCl—for b-CAs (for maintaining constant the ionic strength),
following the initial rates of the CA-catalyzed CO2 hydration reaction for a
period of 10–100 s. For each inhibitor at least six traces of the initial 5–10% of
the reaction have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and subtracted from
the total observed rates. Stock solutions of inhibitor (10 mM) were prepared in
distilled-deionized water with 5–10% (v/v) DMSO (which is not inhibitory at
these concentrations) and dilutions up to 0.1 nM were done thereafter with
distilled-deionized water. Inhibitor and enzyme solutions were preincubated
together for 15 min at room temperature prior to assay, in order to allow for
the formation of the E–I complex. The inhibition constants were obtained by
non-linear least-squares methods using PRISM 3, and represent the mean from at
least three different determinations. CA isozymes were recombinant ones
obtained as reported earlier.7–9
9. Guzel, O.; Maresca, A.; Scozzafava, A.; Salman, A.; Balaban, A. T.; Supuran, C. T. J.
Med. Chem. 2009, 52, 4063.
10. Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168.
11. (a) Innocenti, A.; Mühlschlegel, F. A.; Hall, R. A.; Steegborn, C.; Scozzafava, A.;
Supuran, C. T. Bioorg. Med. Chem. Lett. 2008, 18, 5066; (b) Innocenti, A.; Hall, R.
A.; Schlicker, C.; Mühlschlegel, F. A.; Supuran, C. T. Bioorg. Med. Chem. 2009, 17,
2654; (c) Innocenti, A.; Hall, R. A.; Schlicker, C.; Scozzafava, A.; Steegborn, C.;
Mühlschlegel, F. A.; Supuran, C. T. Bioorg. Med. Chem. 2009, 17, 4503.
12. Innocenti, A.; Leewattanapasuk, W.; Mühlschlegel, F. A.; Mastrolorenzo, A.;
Supuran, C. T. Bioorg. Med. Chem. Lett. 2009, 19, 4802.
13. (a) Schlicker, C.; Hall, R. A.; Vullo, D.; Middelhaufe, S.; Gertz, M.; Supuran, C. T.;
Mühlschlegel, F. A.; Steegborn, C. J. Mol. Biol. 2009, 385, 1207; (b) Innocenti, A.;
Winum, J.-Y.; Hall, R. A.; Mühlschlegel, F. A.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2009, 19, 2642.