A. Roy Chowdhury et al. / Tetrahedron Letters 43 (2002) 7805–7807
7807
resulted in clean removal of the TBDMS ether to give
8. Several conditions were explored to install a -lac-
plas, M.; Moore, J. N.; Boons, G.-J. J. Am. Chem. Soc.
2001, 123, 8145–8146.
6. Boons, G.-J. Tetrahedron 1996, 52, 1095–1121.
7. Wong, C.-H.; Ye, X.; Zhang, Z. J. Am. Chem. Soc. 1998,
120, 7137–7138.
8. Lo¨nn, H. Carbohydr. Res. 1985, 139, 105–114.
9. Zhu, T.; Boons, G.-J. Angew. Chem., Int. Ed. 1999, 38,
1629–1632.
10. Zhu, T.; Boons, G.-J. Tetrahedron Lett. 1998, 39, 2187–
2190.
D
tate moiety at C-3% of 8 but the best results were
obtained with NaH and S-2-chloropropionic acid in
1,4-dioxan to give 9 in a yield of 76%.17,18 Alternatively,
disaccharide 7 could serve in the synthesis of the target
compound 11 by removal of the PMB ether using DDQ
in dichloromethane/water19 to give 10 which was
treated with NaH and S-2-chloropropionic acid.
Recently, considerable attention has been focussed on
the development of efficient procedures for the synthe-
sis of the repeating unit of PGN.20–22 A major synthetic
obstacle was lactonization of muramic acid derivatives
that have a free C-4 hydroxyl. In one approach,22 this
11. Corey, E. J.; Cho, H.; Rucker, C.; Hua, D. H. Tetra-
hedron Lett. 1981, 22, 3455–3458.
12. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972,
94, 6190–6191.
13. Monica, E. K.; Garegg, P. J.; Hultberg, H.; Oscarson, S.
J. Org. Chem. 1983, 2, 305–311.
14. Veeneman, G. H.; Van Leeuwen, S. H.; Van Boom, J. H.
problem was resolved by first installing L-alanine, the
first amino acid residue of the muramyl peptide chain,
followed by conversion into a glycosyl acceptor for the
synthesis of a disaccharide. We addressed this problem
by first synthesizing a disaccharide and thereafter incor-
porating the lactate arm. This approach has the advan-
tage that one disaccharide can be used for the synthesis
of both possible repeating units of PGN (MurNAc-Glc-
NAc and GlcNAc-MurNAc). Alternative synthetic
approaches have employed 2-amino-2-deoxyglucopy-
ranosyl donors protected by a N-trichloroethoxycar-
bonyl (Troc) group. The rationale for the use of a
N-Troc group is that the corresponding glycosyl donors
are 40 times more reactive than a corresponding phthal-
imido protected derivative23 and moreover that it
directs a glycosylation to give exclusively a 1,2-trans
linked product by neighboring group participation.
However, we found that glycosyl donors that were
protected with phthalimido groups led to high yielding
glycosylations. More importantly, the phthalimido
group is compatible with the rather strong basic condi-
tions used for the incorporation of the lactate moiety
whereas the Troc would not survive these conditions.
Tetrahedron Lett. 1990, 31, 1331–1334.
15. Kanie, O.; Crawley, S. C.; Palcic, M. M.; Hindsgaul, O.
Carbohydr. Res. 1993, 243, 139–164.
16. Debenham, J. S.; Debenham, S. D.; Fraser-Reid, B.
Bioorg. Med. Chem. 1996, 4, 1909–1918.
17. Hasegawa, A.; Kaneda, Y.; Yasuhiko, G.; Nishibori, K.;
Kiso, M. Carbohydr. Res. 1981, 94, 143–163.
18. All new compounds gave satisfactory NMR spectro-
scopic, mass spectroscopic data. Selected data for com-
pound 9: Colorless syrup; Rf 0.36 (MeOH: DCM, 8:92,
v/v) MALDI-TOF m/z=900.6 [M+Na]+, 916.4 [M+K]+.
1
Selected signals in H NMR (CDCl3, 500 MHz) l 5.5 (s,
1H, PhCH), 4.2 (d, 3H, H-1, J=7.79 Hz), 2.1 (s, 3H,
NHCOCH3), 2.0 (s, 3H, NHCOCH3), 1.8 (m, 2H,
OCH2CH2CH2N3),
1.4
(d,
3H,
J=6.79
Hz,
(CH(CH3)COOH). 13C NMR (CDCl3, 75 MHz) l 101.3
(PhCH), 100.9, 100.7 (C-1, C-1%), 29.0 (OCH2CH2-
CH2N3), 23.5 (NHCOCH3), 22.7 (NHCOCH3), 18.7
(CH(CH3)COOH). Compound 11: Colorless syrup; Rf
0.21 (MeOH: DCM, 8:92, v/v) MALDI-TOF m/z=895.5
[M+Na]+. 1H NMR (CD3OD, 500 MHz) l 5.3 (s, 1H,
PhCH), 5.0 (dd, 2H, J=11.7 Hz, H-1, H-1%), 1.9 (s, 3H,
NHCOCH3), 1.9 (s, 3H, NHCOCH3), 1.7 (m, 2H,
OCH2CH2CH2N3), 1.1 (d, 3H, J=6.83 Hz, (CH(CH3)-
COOH). 13C NMR (CD3OD, 75 MHz) l 101.1 (C-1,
C-1%), 29.2 (CH(CH3)COOH), 23.8 (NHCOCH3), 22.0
(OCH2CH2CH2N3), 21.8 (NHCOCH3).
Acknowledgements
This research was supported by the NIH (GM61761)
and the American Heart Association (0051229B).
19. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yone-
mitsu, O. Tetrahedron 1986, 42, 3021–3028.
20. Inamura, S.; Fukase, K.; Kusumoto, S. Tetrahedron Lett.
2001, 42, 7613–7616.
21. VanNieuwenhze, M. S.; Mauldin, S. C.; Zia-Ebrahimi,
M.; Aikins, J. A.; Blaszczak, L. C. J. Am. Chem. Soc.
2001, 123, 6983–6988.
22. Saha, S. L.; Nieuwenhze, S. V.; Hornback, W. J.; Aikins,
J. A.; Blaszczak, L. C. Org. Lett. 2001, 3, 3575–3577.
23. Zhang, Z.; Ollmann, I. R.; Ye, X.; Wischnat, R.; Baasov,
T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734–753.
References
1. Bone, R. C. Arch. Intern. Med. 1994, 154, 26–34.
2. Nogare, A. R. Am. J. Med. Sci. 1994, 302, 50–65.
3. Aderem, A.; Ulevitch, R. J. Nature 2000, 406, 782–786.
4. Mantovani, A.; Muzio, M. Microbes Infection 2000, 2,
251–255.
5. Siriwardena, A.; Jorgensen, M.; Wolfert, M.; Vanden-