1976
Y.-L. Yan et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1970–1976
O
S
O
O
O
O
O
O
MsCl
CH2Cl2, NEt3, 0 ºC
H2N
O
Cl
OH
O
PMB
PMB
PMB
CH CN, Et N, reflux
O
O
O
3
3
21%
77%
27
28
24
O
O
N
CF3CO2H
N
H
H
CH2Cl2, rt
88%
OH
O
PMB
O
O
29
30
Scheme 6. Synthetic scheme for compound 30.
provided the mesylate ester 27 in 50% yield. The major side prod-
uct in this transformation was the corresponding chloride 28 (21%
yield). The 4-biphenylmethyl backbone was introduced by reflux-
ing of 27 with 4-biphenylmethylamine in CH3CN in the presence
of triethylamine, resulting in compound 29. Again, the PMB pro-
tecting group was easily removed by treatment with CF3CO2H at
room temperature to give compound 30. In the preparation of
30, a benzyl protecting group was tested instead of the PMB pro-
tecting group, but again the 4-biphenylmethyl backbone was par-
tially removed, as was found in the preparation of compound 26.
The inhibition data for compounds AM-2, 26, and 30 reveals the
importance of the backbone linkage. The three inhibitors have the
same ZBG and 4-biphenylmethyl backbone, but each has a differ-
ent linker, namely amido (AM-2), ether (26), and amino (30). Com-
pounds 26 and 30 are much less potent than AM-2 against MMP-3,
which may be partially explained by favorable hydrogen bonding
between the amido carbonyl group of AM-2 and the amino acid
L164 in the MMP.15 In addition, the ether linkage of 26 and the
amino linkage of 30 are electron-donating, while the amido linkage
of AM-2 is electron-withdrawing. The differing electronic effects of
linkers at the 2-position leads to significant differences in the pKa
values of the hydroxypyrone chelator,30 with the amide compound
being more acidic than either the ether- or amino-linked com-
pound (unpublished results). These findings suggest that the link-
ing group between the backbone and the ZBG can significantly
influence the efficacy of an inhibitor through both direct (e.g., H-
bonding) and inductive (e.g., ligand acidity) effects that must be
carefully considered for successful MMPi design.
A.L. Rheingold for assistance with the X-ray structure determina-
tion. This material is based upon work supported in part by the
NIH (R01 HL00049-01) and the American Heart Association
(0430009N).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Puerta, D. T.; Cohen, S. M. Curr. Top. Med. Chem. 2004, 4, 1551.
2. Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2004, 11, 2911.
3. Whittaker, M. F.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem. Rev. 1999, 99,
2735.
4. Matziari, M.; Dive, V.; Yiotakis, A. Med. Res. Rev. 2007, 27, 528.
5. Ahmet, M. T.; Frampton, C. S.; Silver, J. Dalton Trans. 1988, 1159.
6. Ellis, B. L.; Duhme, A. K.; Hider, R. C.; Hossain, M. B.; Rizvi, S.; van der Helm, D. J.
Med. Chem. 1996, 39, 3659.
7. Liu, Z. D.; Hider, R. C. Med. Res. Rev. 2002, 22, 26.
8. Liu, Z. D.; Piyamongkol, S.; Liu, D. Y.; Khodr, H. H.; Lu, S. L.; Hider, R. C. Bioorg.
Med. Chem. 2001, 9, 563.
9. Santos, M. A. Coord. Chem. Rev. 2002, 228, 187.
10. Thompson, K. H.; Barta, C. A.; Orvig, C. Chem. Soc. Rev. 2006, 35, 545.
11. Bentley, R. Nat. Prod. Rep. 2006, 23, 1046.
12. Puerta, D. T.; Cohen, S. M. Inorg. Chem. 2003, 42, 3423.
13. Puerta, D. T.; Griffin, M. O.; Lewis, J. A.; Romero-Perez, D.; Garcia, R.; Villarreal,
F. J.; Cohen, S. M. J. Biol. Inorg. Chem. 2006, 11, 131.
14. Puerta, D. T.; Lewis, J. A.; Cohen, S. M. J. Am. Chem. Soc. 2004, 126, 8388.
15. Puerta, D. T.; Mongan, J.; Tran, B. L.; McCammon, J. A.; Cohen, S. M. J. Am. Chem.
Soc. 2005, 127, 14148.
16. Agrawal, A.; Romero-Perez, D.; Jacobsen, J. A.; Villarreal, F. J.; Cohen, S. M.
In summary, diverse arrays of hydroxypyrone and hydroxythio-
pyrone derivatives with different substitution patterns were syn-
thesized and their inhibitory activity against three MMPs were
examined. Our results suggest that hydroxypyrones and hydroxy-
thiopyrones have different conformations with the same back-
bones leading to different selectivity and potency against MMPs.
Our findings also show that an amide linkage between the chelator
and the backbone is also essential for potent inhibition in this sys-
tem. These synthetic approaches for manipulating hydroxypyrones
and the structure–activity relationship information obtained from
these MMPi should provide guidance for future design and optimi-
zation of potent and selective hydroxypyrone-based MMPi with
multiple interactions with MMPs.
ChemMedChem 2008, 3, 812.
17. Knight, C. G.; Willenbrock, F.; Murphy, G. FEBS Lett. 1992, 296, 263.
18. Finnegan, M. M.; Lutz, T. G.; Nelson, W. O.; Smith, A.; Orvig, C. Inorg. Chem.
1987, 26, 2171.
19. Finnegan, M. M.; Rettig, S. J.; Orvig, C. J. Am. Chem. Soc. 1986, 108, 5033.
20. McNeill, J. H.; Yuen, V. G.; Hoveyda, H. R.; Orvig, C. J. Med. Chem. 1992, 35, 1489.
21. Saatchi, K.; Thompson, K. H.; Patrick, B. O.; Pink, M.; Yuen, V. G.; McNeill, J. H.;
Orvig, C. Inorg. Chem. 2005, 44, 2689.
22. Song, B.; Saatchi, K.; Rawji, G. H.; Orvig, C. Inorg. Chim. Acta 2002, 339, 393.
23. Thompson, K. H.; Liboiron, B. D.; Sun, Y.; Bellman, K. D.; Setyawati, I. A.; Patrick,
B. O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K.; Bhanot, S.; Cassidy, C.;
McNeill, J. H.; Yuen, V. G.; Orvig, C. J. Biol. Inorg. Chem. 2003, 8, 66.
24. Puerta, D. T.; Botta, M.; Jocher, C. J.; Werner, E. J.; Avedano, S.; Raymond, K. N.;
Cohen, S. M. J. Am. Chem. Soc. 2006, 128, 2222.
25. Curphey, T. J. J. Org. Chem. 2002, 67, 6461.
26. Yan, Y. L.; Cohen, S. M. Org. Lett. 2007, 9, 2517.
27. Cuniasse, P.; Devel, L.; Makaritis, A.; Beau, F.; Georgiadis, D.; Matziari, A.;
Yiotakis, A.; Dive, V. Biochimie 2005, 87, 393.
28. Matziari, M.; Beau, F.; Cuniasse, P.; Dive, V.; Yiotakis, A. J. Med. Chem. 2004, 47,
325.
Acknowledgments
29. Lewis, J. A.; Mongan, J.; McCammon, J. A.; Cohen, S. M. ChemMedChem 2006, 1,
694.
30. Gordon, A. E. V.; Xu, J.; Raymond, K. N.; Durbin, P. Chem. Rev. 2003, 103, 4207.
The authors thank Dr. Yongxuan Su for mass spectral analyses
of all compounds, Dr. J.R. Stork, Dr. A.G. DiPasquale, and Professor