A. Guaragna et al. / Tetrahedron Letters 50 (2009) 2045–2047
2047
tured that entry of OsO4/TMEDA is hampered by the presence of
t-butoxycarbonyl group in the 5HN conformation, and by the axi-
ally oriented C-6 methylene group when 16 adopts the NH5 confor-
mation (Scheme 6).
Boc
N
RO
RO
MeONa/MeOH 14 R = Ac
In summary, in this Letter, we have outlined a synthetic path for
16 R = H
quant.
the preparation of non-naturally occurring
oDNJ (6). Studies aimed to obtain the remaining deoxyiminopyra-
noses belonging to -series by anti-dihydroxylation reactions of
L-guloDNJ (5) and L-tal-
OsO4/TMEDA
flash
CH2Cl2 chromatography
L
56%
38%
olefins 14 and 16 are ongoing and will be published in due course.
Boc
N
Boc
N
References and notes
HO
HO
HO
HO
1. Compain, P.; Martin, O. R. Iminosugars—From Synthesis to Therapeutic
Applications; John Wiley & Sons Ltd: West Sussex England, 2007.
2. Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515–553.
3. (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077–3092; (b)
Compain, P.; Martin, O. R. Curr. Top. Med. Chem. 2003, 3, 541–560.
4. Asano, N. Glycobiology 2003, 13, 93R–104R.
O
O
Os
N
O
O
O
Os
O
N
N
O
O
18
N
19
5. Pavlovic, D.; Neville, D. C.; Argaud, O.; Blumberg, B.; Dwek, R. A.; Fischer, W. B.;
Zitzmann, N. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6104–6108.
6. (a) Butters, T. D.; Dwek, R. A.; Platt, F. M. Glycobiology 2005, 15, 43R–52R; (b)
Butters, T. D. Curr. Opin. Chem. Biol. 2007, 11, 412–418.
quant.
quant.
aq 6N HCl
aq 6N HCl
7. D’Alonzo, D.; Guaragna, A.; Palumbo, G. Curr. Med. Chem. 2009, 16, 473–505.
8. (a) Wu, C.-Y.; Chang, C.-F.; Chen, J. S.-Y.; Wong, C.-H.; Lin, C.-H. Angew. Chem.,
Int. Ed. 2003, 42, 4661–4664; (b) Chang, C.-F.; Ho, C.-W.; Wu, C.-Y.; Chao, T.-A.;
Wong, C.-H.; Lin, C.-H. Chem. Biol. 2004, 11, 1301–1306.
9. See, for example: Yu, C.-Y.; Asano, N.; Ikeda, K.; Wang, M.-X.; Butters, T. D.;
Wormald, M. R.; Dwek, R. A.; Winters, A. L.; Nash, R. J.; Fleet, G. W. J. Chem.
Commun. 2004, 1936–1937.
10. Carmona, A. T.; Popowycz, F.; Gerber-Lemaire, S.; Rodríguez-García, E.; Schütz,
C.; Vogel, P.; Robina, I. Bioorg. Med. Chem. 2003, 11, 4897–4911.
11. Asano, N.; Ikeda, K.; Yu, L.; Kato, A.; Takebayashi, K.; Adachi, I.; Kato, I.; Ouchi,
H.; Takahata, H.; Fleet, G. W. J. Tetrahedron: Asymmetry 2005, 16, 223–229.
12. Kato, A.; Kato, N.; Kano, E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.;
Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005, 48, 2036–2044.
13. Guaragna, A.; D’Errico, S.; D’Alonzo, D.; Pedatella, S.; Palumbo, G. Org. Lett.
2007, 9, 3473–3476.
H
H
HCl
HCl
N
N
HO
HO
HO
HO
OH
OH
OH
5.HCl
OH
6 .HCl
L-talo-DNJ
L-gulo-DNJ
Scheme 5. Osmylation of 14 under Donohoe’s conditions.
14. Guaragna, A.; Pedatella, S.; Palumbo, G. In e-Encyclopedia of Reagents for Organic
Synthesis (e-EROS); Paquette, L. A., Ed.; John Wiley & Sons: New York, US, 2008.
15. Maercker, A.; Roberts, J. D. J. Am. Chem. Soc. 1966, 88, 1742–1759.
16. Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2001, 2136–2157.
17. Okamoto, N.; Hara, O.; Makino, K.; Hamada, Y. J. Org. Chem. 2002, 67, 9210–
9215.
18. The presence of tosylate intermediate has been ascertained as it can be easily
isolated by common chromatographic purification techniques.
19. D’Alonzo, D.; Guaragna, A.; Napolitano, C.; Palumbo, G. J. Org. Chem. 2008, 73,
5636–5639.
5HN
O
O
O
HO
H
NH5
N
N
O
O
H
O
O
O
O
O
O
Os
Os
O
HO
20. Cha, J. K.; No-Soo, K. Chem. Rev. 1995, 95, 1761–1795.
21. See, for example: Guaragna, A.; Napolitano, C.; D’Alonzo, D.; Pedatella, S.;
Palumbo, G. Org. Lett. 2006, 8, 4863–4866.
N
O
O
N
N
N
22. Donohoe, T. J. Synlett 2002, 1223–1232.
ꢀ2.5 (c 0.5 MeOH); 1H NMR (500 MHz, D2O) d
Scheme 6. Proposed NH5 and 5HN conformers for olefin 16.
23. Data for compound 5ꢁHCl: ½a D
ꢂ
3.13 (t, J = 12.2 Hz, 1H), 3.31 (dd, J = 4.8, 12.2 Hz, 1H), 3.55–3.59 (ddd, J = 1.5,
4.4, 9.3 Hz, 1H), 3.82 (dd, J = 9.3, 12.2 Hz, 1H), 3.91 (dd, J = 4.4, 12.2 Hz, 1H),
4.07 (dd, J = 3.0, 4.8 Hz, 1H), 4.16 (dd, J = 1.5, 4.8 Hz, 1H), 4.26 (ddd, J = 3.0, 4.9,
11.7 Hz, 1H). 13C NMR (125 MHz, D2O) d 42.4, 55.5, 59.0, 62.6, 67.2, 68.5. Anal.
Calcd for C6H13NO4: C, 44.16; H, 8.03; N, 8.58. Found: C, 43.89; H, 7.87; N, 8.70.
24. Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.; Helliwell,
M.; Newcombe, N. J.; Stemp, G. J. Org. Chem. 2002, 67, 7946–7956.
affording a mixture of L-gulo- and L-taloDNJ derivatives 18 and 19
(dr = 6:4), which can be separated by flash chromatography
(CHCl3/MeOH, 8:2). Hydrolysis of osmate esters 18 and 19 along
with removal of N-Boc protection using aq 6 N HCl24 furnished
+22.0 (c 0.5 MeOH); 1H NMR (400 MHz, D2O) d
deoxy-
a very good 93% overall yield (Scheme 5).
L-gulonojirimycin (5) and deoxy-L
-talonojirimycin (6)25 in
25. Data for compound 6ꢁHCl: ½a D
ꢂ
3.10 (dd, J = 1.6, 13.6 Hz, 1H), 3.24 (dt, J = 1.8, 6.7 Hz, 1H), 3.35 (dd, J = 2.8,
13.6 Hz, 1H), 3.65–3.74 (m, 3H), 3.99–4.04 (m, 1H), 4.02–4.08 (m, 1H). 13C NMR
(100 MHz, D2O) d 50.4, 61.1, 62.5, 68.7, 69.2, 69.9. Anal. Calcd for C6H13NO4: C,
44.16; H, 8.03; N, 8.58. Found: C, 44.45; H, 8.10; N, 8.39.
In our opinion, the low level of selectivity observed above could
be due to the difficulty in the access of the incoming OsO4/TMEDA
complex to the syn face of allylic alcohol 16. Indeed, even though
NMR data suggest that olefin 16 exists as a mixture of conformers
(presumably corresponding to NH5 and 5HN),26 it can be conjec-
26. 1H NMR (500 MHz, CD3OD) d 1.47 (s, 4.5H), 1.48 (s, 4.5H), 3.47–3.60 (m, 1H),
3.51 (br t, J = 10.8 Hz, 1H), 3.81 (br dd, J = 11.2, 3.3 Hz, 1H), 4.09–4.12 (m, 0.5H),
4.15–4.18 (m, 0.5H), 4.40 (br s, 1H), 4.54 (br s, 1H), 5.63 (br d, J = 10.2 Hz, 1H),
5.64–5.75 (m, 1H).