P
J. Pletz et al.
Feature
Synthesis
IR (ATR): 3342, 2946, 2859, 1730, 1681, 1591, 1571, 1499, 1435, 1404,
1314, 1215, 1188, 1140, 1111, 1081, 1042, 807, 788, 697, 644, 562,
A.; Kahlcke, N.; Feurer, M.; Roth, S. Chem. Eur. J. 2011, 17, 12203.
(f) Matsumura, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 1829.
With PMHS, see: (g) Chandrasekhar, S.; Reddy, C. R.; Ahmed, M.
Synlett 2000, 1655. (h) Patel, J. P.; Li, A.-H.; Dong, H.; Korlipara,
V. L.; Mulvihill, M. J. Tetrahedron Lett. 2009, 50, 5975. (i) Kumar,
V.; Sharma, S.; Sharma, U.; Singh, B.; Kumar, N. Green Chem.
2012, 14, 3410. (j) Nayal, O. S.; Bhatt, V.; Sharma, S.; Kumar, N.
J. Org. Chem. 2015, 80, 5912. With PhSiH3, see: (k) Apodaca, R.;
Xiao, W. Org. Lett. 2001, 3, 1745. (l) Smith, C. A.; Cross, L. E.;
Hughes, K.; Davis, R. E.; Judd, D. B.; Merritt, A. T. Tetrahedron
Lett. 2009, 50, 4906.
520 cm–1
.
1H NMR (300 MHz, CDCl3): δ = 8.16 (d, 4JHH = 2.0 Hz, 1 H, ArH), 7.93 (d,
3JHH = 7.0 Hz, 1 H, NH), 7.53 (dd, 3JHH = 8.9 Hz, 4JHH = 1.6 Hz, 1 H, ArH),
6.57 (d, 3JHH = 9.0 Hz, 1 H, ArH), 3.94–3.62 (m, 7 H, 2 × CH3, CH), 2.78–
2.62 (m, 1 H, CH), 2.13–1.92 (m, 1 H, CH2), 1.90–1.51 (m, 7 H, CH2).
13C NMR (75.53 MHz, CDCl3): δ = 175.9 (Cq), 168.2 (Cq), 149.6 (Cq),
142.8 (CHarom), 140.1 (CHarom), 114.3 (CHarom), 112.1 (Cq), 73.9 (Cq),
51.8 (2 × CH3), 46.9, 38.7, 32.5, 31.0, 28.1, 21.2.
(7) For transfer hydrogenations, see: (a) Itoh, T.; Nagata, K.;
Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A. Tetrahedron
2004, 60, 6649. (b) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.;
Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741. (c) Huang, Y.-B.; Yi,
W.-B.; Cai, C. J. Fluorine Chem. 2010, 131, 879. (d) Nguyen, Q. P.
B.; Kim, T. H. Tetrahedron Lett. 2011, 52, 5004. (e) Zhu, C.;
Akiyama, T. Synlett 2011, 1251. (f) Zhang, M.; Yang, H.; Zhang,
Y.; Zhu, C.; Li, W.; Cheng, Y.; Hu, H. Chem. Commun. 2011, 47,
6605. (g) Lei, Q.; Wei, Y.; Talwar, D.; Wang, C.; Xue, D.; Xiao, J.
Chem. Eur. J. 2013, 19, 4021. (h) Talwar, D.; Salguero, N. P.;
Robertson, C. M.; Xiao, J. Chem. Eur. J. 2014, 20, 245.
(i) Gülcemal, D.; Gülcemal, S.; Robertson, C. M.; Xiao, J. Organo-
metallics 2015, 34, 4394.
(8) For metal-catalyzed reductive aminations, see: (a) Imao, D.;
Fujihara, S.; Yamamoto, T.; Ohta, T.; Ito, Y. Tetrahedron 2005, 61,
6988. (b) Li, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2009,
131, 6967. (c) Rubio-Pérez, L.; Pérez-Flores, F. J.; Sharma, P.;
Velasco, L.; Cabrera, A. Org. Lett. 2009, 11, 265. (d) Steinhuebel,
D.; Sun, Y.; Matsumura, K.; Sayo, N.; Saito, T. J. Am. Chem. Soc.
2009, 131, 11316. (e) Werkmeister, S.; Junge, K.; Beller, M.
Green Chem. 2012, 14, 2371. (f) Pagnoux-Ozherelyeva, A.;
Pannetier, N.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-L. Angew.
Chem. Int. Ed. 2012, 51, 4976. (g) Chusov, D.; List, B. Angew.
Chem. Int. Ed. 2014, 53, 5199. (h) Kolesnikov, P. N.; Yagafarov, N.
Z.; Usanov, D. L.; Maleev, V. I.; Chusov, D. Org. Lett. 2015, 17,
173. (i) Jumde, V. R.; Petricci, E.; Petrucci, C.; Santillo, N.; Taddei,
M.; Vaccaro, L. Org. Lett. 2015, 17, 3990.
Acknowledgment
Financial support by the Austrian Science Fund FWF (Project I-668)
and NAWI Graz is gratefully acknowledged. We thank Prof. Wulf
Blankenfeldt (Helmholtz-Zentrum für Infektionsforschung, Braun-
schweig/D) for our continuous collaboration in the development of
inhibitors of the phenazine biosynthesis pathway, Prof. Hansjörg
Weber for NMR measurements, and Mario Mugitsch, Manuel
Köckinger, and Minh-Hao Hoang for skillful assistance in the lab.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References
(1) Mentel, M.; Ahuja, E. G.; Mavrodi, D. V.; Breinbauer, R.;
Thomashow, L. S.; Blankenfeldt, W. ChemBioChem 2009, 10,
2295.
(2) Ahuja, E. G.; Janning, P.; Mentel, M.; Graebsch, A.; Breinbauer,
R.; Hiller, W.; Costisella, B.; Thomashow, L. S.; Mavrodi, D. V.;
Blankenfeldt, W. J. Am. Chem. Soc. 2008, 130, 17053.
(3) Mentel, M.; Blankenfeldt, W.; Breinbauer, R. Angew. Chem. Int.
Ed. 2009, 48, 9084.
(9) For reductive amination with BH3·THF, see: (a) Heydari, A.;
Tavakol, H.; Aslanzadeh, S.; Azarnia, J.; Ahmadi, N. Synthesis
2005, 627. (b) Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.;
Ong, T.-G. Organometallics 2013, 32, 2435. (c) For BH3·SMe2, see:
Figge, A.; Altenbach, H. J.; Brauer, D. J.; Tielmann, P. Tetrahedron:
Asymmetry 2002, 13, 137. (d) See also: Tokizane, M.; Sato, K.;
Sakami, Y.; Imori, Y.; Matsuo, C.; Ohta, T.; Ito, Y. Synthesis 2010,
36. (e) For a review on amine–boranes, see: Kanth, J. V. B. Aldri-
chimica Acta 2002, 35, 57. (f) For pyr·BH3, see: Pelter, A.; Rosser,
R. M. J. Chem. Soc., Perkin Trans. 1 1984, 717. (g) See also:
Bomann, M. D.; Guch, I. C.; DiMare, M. J. Org. Chem. 1995, 60,
5995. (h) See also: Tapia, I.; Alonso-Cires, L.; López-Tudanca, P.
L.; Mosquera, R.; Labeaga, L.; Innerárity, A.; Orjales, A. J. Med.
Chem. 1999, 42, 2870. (i) For picoline–borane, see: Sato, S.;
Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. Tetrahedron 2004, 60,
7899. (j) See also: Kawase, Y.; Yamagishi, T.; Kutsuma, T.;
Zhibao, H.; Yamamoto, Y.; Kimura, T.; Nakata, T.; Kataoka, T.;
Yokomatsu, T. Org. Process Res. Dev. 2012, 16, 495. (k) For
NH3·BH3, see: Ramachandran, P. V.; Gagare, P. D.; Sakavuyi, K.;
Clark, P. Tetrahedron Lett. 2010, 51, 3167. (l) For 5-ethyl-2-
methylpyridine–borane, see: Burkhardt, E. R.; Coleridge, B. M.
Tetrahedron Lett. 2008, 49, 5152. (m) For 9-BBN, see: Qu, B.;
Haddad, N.; Rodriguez, S.; Lee, H.; Ma, S.; Zeng, X.; Reeves, D. C.;
Sidhu, K. P. S.; Lorenz, J. C.; Grinberg, N.; Busacca, C. A.;
(4) (a) Graebe, C.; Lagodzinski, K. Chem. Ber. 1892, 25, 1733.
(b) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.
(c) Ullmann, F. Chem. Ber. 1903, 36, 2382. (d) Goldberg, I. Chem.
Ber. 1906, 39, 1691. (e) For a review, see: Ley, S. V.; Thomas, A.
W. Angew. Chem. Int. Ed. 2003, 42, 5400.
(5) For borohydrides, see: (a) Abdel-Magid, A. F.; Maryanoff, C. A.
Synlett 1990, 537. (b) Abdel-Magid, A. F.; Carson, K. G.; Harris, B.
D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.
(c) Cho, B. T.; Kang, S. K. Synlett 2004, 1484. (d) Miriyala, B.;
Bhattacharyya, S.; Williamson, J. S. Tetrahedron 2004, 60, 1463.
(e) Gutierrez, C. D.; Bavetsias, V.; McDonald, E. Tetrahedron Lett.
2005, 46, 3595. (f) McLaughlin, M.; Palucki, M.; Davies, I. W.
Org. Lett. 2006, 8, 3307. (g) Abdel-Magid, A. F.; Mehrman, S. J.
Org. Process Res. Dev. 2006, 10, 971. (h) Tajbakhsh, M.;
Hosseinzadeh, R.; Alinezhad, H.; Ghahari, S.; Heydari, A.;
Khaksar, S. Synthesis 2011, 490. (i) Bogolubsky, A. V.; Moroz, Y.
S.; Pipko, S. E.; Panov, D. M.; Konovets, A. I.; Doroschuk, R.;
Tolmachev, A. Synthesis 2014, 46, 1765.
(6) For reductive aminations with Et3SiH, see: (a) Han, Y.; Chorev,
M. J. Org. Chem. 1999, 64, 1972. (b) Lee, O.-Y.; Law, K.-L.; Ho, C.-
Y.; Yang, D. J. Org. Chem. 2008, 73, 8829. (c) Lee, O.-Y.; Law, K.-L.;
Yang, D. Org. Lett. 2009, 11, 3302. (d) Prakash, G. K. S.; Do, C.;
Mathew, T.; Olah, G. A. Catal. Lett. 2010, 137, 111. (e) Gellert, B.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, A–Q