G.-J. Ye et al. / Dyes and Pigments 94 (2012) 271e277
277
[11] Anemian R, Morel Y, Baldeck PL, Paci B, Kretsch K, Nunzi JM, et al. Optical
detectable two-photon absorption at 800 nm using femtosecond
laser. The pump probe also confirmed the NLO results. Hydrazone
bridge plays an important role in the NLO absorption. Elongated
alkyl chain length does not improve the nonlinear properties of
these compounds but can improve the film-forming ability, which
is important for optical limiting device. These compounds can
become new dyes in application in broad-band optical limiter. How
to further improve their NLO properties by careful molecular design
is ongoing in our lab.
0
limiting in the visible range: molecular engineering around N4, N4 -bis(4-
0
methoxyphenyl)-N4, N4 -diphenyl-4,40-diaminobiphenyl.
J
Mater Chem
2003;13:2157e63.
[12] Zhou G, Wang X, Wang D, Wang C, Shao Z, Fang Q, et al. Two-photon
absorption and nonlinear optical properties of a new organic dye PSPI. Opt
Commun 2001;190:345e9.
[13] Abbotto A, Beverina L, Bozio R, Facchetti A, Ferrante C, Pagani GA, et al. Novel
heterocycle-based two-photon absorbing dyes. Org Lett 2002;9:1495e8.
[14] Spangler CW. Recent development in the design of organic materials for
optical power limiting. J Mater Chem 1999;9:2013e20.
[15] Chen Y, Hanack M, Araki Y, Ito O. Axially modified gallium phthalocyanines
and naphthalocyanines for optical limiting. Chem Soc Rev 2005;34:517e29.
[16] Sun YP, Riggs JE. Organic and inorganic optical limiting materials from
fullerenes to nanoparticles. Int Rev Phys Chem 1999;18:43e90.
[17] Bojinov V, Ivanova G, Simeonov D. Synthesis and photophysical investigations
of novel polymerizable blue emitting fluorophoresecombination of
a hindered amine with a benzo[de]isoquinoline-1,3-dione. Macromol Chem
Phys 2004;9:1259e68.
[18] Bojinov V, Panova L, Grabchev I. Novel adducts of a 2-(2-hydroxyphenyl)-
benzotriazole and a blue emitting benzo [de]isoquinoline-1,3-dione for “one-
step” fluorescent brightening and stabilization of polymers. Polym Degrad
Stabil 2005;3:420e7.
Acknowledgements
Authors gratefully thank Chinese Natural Science Foundation
No.20876101, 20902065 and 21071105, and major project of college
and universities Jiangsu Province (08KJA430004). A Project Funded
by the Priority Academic Program Development of Jiangsu Higher
Education Institutions.
[19] Srikun D, Miller EW, Domaille DW, Chang CJ. An ICT-based approach to
ratiometric fluorescence imaging of hydrogen peroxide produced in living
cells. J Am Chem Soc 2008;130:4596e7.
References
[20] Veale EB, Frimannsson DO, Lawler M, Gunnlaugsson T. 4-Amino-1,8-naph-
thalimide-based Troger’s bases as high affinity DNA targeting fluorescent
supramolecular Scaffolds. Org Lett 2009;18:4040e4.
[1] Areephong J, Kudernac T. On/Off photoswitching of the electro-
polymerizability of terthiophenes. J Am Chem Soc 2008;130:12850e1.
[2] He GS, Zhu J, Baev A, Samo M, Frattarelli DL, Watanabe N, et al. Twisted
p-
[21] Zhang JF, Lim CS, Bhuniya S, Cho BR, Kim JS. A highly selective colorimetric
and ratiometric two-photon fluorescent probe for fluoride ion detection. Org
Lett 2011;13:1190e3.
[22] Zhao P, Jiang JB, Leng B, Tian H. Polymer fluoride sensors synthesized by RAFT
polymerization. Macromol Rapid Comm 2009;30:1715e8.
system chromophores for all-optical switching. J Am Chem Soc 2011;133:
6675e80.
[3] Ehrlich JE, Wu XL, Lee LY, Hu ZY, Rockel H, Marder SR, et al. Two-photon
absorption and broad-band optical limiting with bis-donor stilbenes. Opt Lett
1997;22:1843e5.
[23] Lygaitis R, Getautis V, Grazulevicius JV. Hole-transporting hydrazones. Chem
Soc Rev 2008;37:770e88.
[24] Lee HY, Song XL, Park H, Baik MH, Lee D. Torsionally responsive C(3)-
symmetric azo dyes: azo-hydrazone tautomerism, conformational switch-
[4] He GS, Xu GC, Prasad PN, Reinhardt BA, Bhatt JC, Dillard AG. Two-photon
absorption and optical-limiting properties of novel organic compounds. Opt
Lett 1995;20:435e7.
[5] Shi YQ, Zhang C, Zhang H, Bechtel JH, Dalton LR, Robinson BH. Low (Sub-1-
Volt) halfwave voltage polymeric electro-optic modulators achieved by
controlling chromophore shape. Science 2000;288:119e22.
[6] Marder SR, Kippelen B, Jen AKY, peyghambarian N. Design and synthesis of
chromophore and polymers for electro-optic and photorefractive applications.
Nature 1997;388:845e51.
ing, and application for chemical sensing.
J Am Chem Soc 2010;132:
12133e44.
[25] Jeong MJ, Park JH, Lee C, Chang JY. Discotic liquid crystalline hydrazone
compounds: synthesis and mesomorphic properties. Org Lett 2006;8:
2221e4.
[26] Chiwara VI, Haraguchi N, Itsuno S. Polymer-immobilized catalyst for asym-
[7] Jothy VB, Sajan D, Ravikumar C, Nêmec I, Xia CN, Rastogie VK. First order
molecular hyperpolarizabilities and intramolecular charge transfer from the
vibrational spectra of NLO material: ethyl-3-(3,4-dihydroxyphenyl)-2-
propenoate. J Raman Spectrosc 2009;40:1822e30.
[8] Rath H, Sankar J, PrabhuRaja V. Core-modified expanded porphyrins with large
third-order nonlinear optical response. J Am Chem Soc 2005;127:11608e9.
[9] Tykwinski RR, Gubler U, Martin RE, Diederich F, Bosshard C, Günter P.
Structure-property relationships in third-order nonlinear optical chromo-
phores. J Phys Chem B 1998;102:4451e65.
metric hydrogenation of racemic
a-(N-Benzoyl-N-methylamino) propiophe-
none. J Org Chem 2009;74:1391e3.
[27] Gan J, Tian H, Wang ZH, Chen K, Hill J, Lane PA, et al. Synthesis and lumi-
nescence properties of novel ferroceneenaphthalimides dyads. J Organomet
Chem 2002;645:168e75.
[28] Kang H, Facchetti A, Zhu P, Jiang H, Yang Y, Cariati E, et al. Angew Chem Int Ed
2005;44:7922e5.
[29] Kim T, Kang J, Luo J, Jang S, Ka J, Tucker N, et al. J Am Chem Soc 2007;129:
488e9.
[30] Liu BQ, Sun R, Ge JF, Li NJ, Shi XL, Qiu LH, et al. Dyes Pigm 2011;88:50e6.
[31] Vikrant VN, Vasudevan S. J Phys Chem C 2011;115:8221e32.
[10] Li CW, Yang K, Yan F, Su XY, Yang JY, Jin X, et al. Investigation of two-photon
absorption induced excited state absorption in a fluorenyl-based chromo-
phore. J Phys Chem B 2009;113:15730e3.