C O M M U N I C A T I O N S
Table 2. Ir-Catalyzed Asymmetric Allylic Amination of Allylic
Alcohols in the Presence of Nb(OEt)5
reactions of the electron-rich p-methoxy-substituted cinnamyl alco-
hol. Arylamines bearing substituents in the 2-, 3-, and 4-position
reacted, and anilines containing p-chloro groups reacted without
cleaving the C-Cl bond. The major competing process was forma-
tion of diallyl ethers; thus, the reactions were conducted with 1.5
equiv of the alcohol. These reactions constitute a rare example of
the activation of allylic alcohols using a catalytic amount of transi-
tion metal complex, as well as a catalytic amount of Lewis acid.
In summary, two procedures have been developed for iridium-
catalyzed allylic amination of allylic alcohols to form branched
allylic amine products with high regio- and enantioselectivity. Nb-
(OEt)5 was found to serve as an activator of the allylic alcohol in
situ, and BPh3 was found to act as an activator in catalytic amounts.
Further investigation of the scope and mechanism of this process
is ongoing.
a
yieldc
eee
(%)
(%)
entry
1, R1
)
2b, R2
)
3/4d
1
2
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
p-MeC6H4
85
84
66
83
79
82
72
66
90
85
78
70
70
45
67
>96/<4f
96/4f
92
89
92
81
86
87
93
90
94
89
70
92
90
82
89
p-MeOC6H4
3
o-MeOC6H4
>96/<4f
4
m-MeOC6H4
96/4f
5g,h
6g,h
7g
8g
9
p-IC6H4
95/5
p-ClC6H4
96/4
Bn
96/4
p-MeOC6H4CH2
93/7
2)morpholine
98/2
10
11
12i
13
14j
15
p-MeOC6H4
o-MeOC6H4
2-furyl
propyl
isopropyl
1-propenyl
Ph
Ph
Ph
Ph
Ph
Ph
98/2
99/1
81/19
92/8
88/12f
79/14/7k
a The reaction was performed with 1 (1.0 mmol) and 2 (1.5 mmol) in
THF (0.5 mL) at 50 °C for 24 h in the presence of 2 mol % of catalyst
prepared from [Ir(COD)Cl]2 (0.010 mmol), and 5a (0.020 mmol), Nb(OEt)5
(1.2 mmol), and 4 Å MS (50 mg) were used unless otherwise noted. b Except
entry 10, R3 ) H. c Isolated yield of branched product 3. d Ratio of 3 and
4 was determined by 1H NMR analysis of the crude reaction mixture.
e Enantiomeric excess of 3. f Determined after isolation. g The Ir catalyst
(3 mol %) was used. h 2 (2.0 mmol) was used. i The reaction was carried
out at 40 °C. j The Ir catalyst (5 mol %) and aniline (2.0 mmol) were used.
k Branched/5-phenylamino-1,3-hexadiene/linear.
Acknowledgment. We thank the NSF (CHE-0414542) for
support of this work.
Note Added after ASAP Publication. Table 1, foonote a
was corrected on May 29, 2007.
Supporting Information Available: Experimental procedures and
spectroscopic data of the reaction products (PDF). This material is
References
Scheme 1
(1) (a) Trost, B. M.; VanVranken, D. L. Chem. ReV. 1996, 96, 395. (b) Trost,
B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921. (c) Negishi, E.-i.
Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-
Interscience: New York, 2002.
(2) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.;
Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
(3) (a) Bergbreiter, D. E.; Weatherford, D. A. J. Chem. Soc., Chem. Commun.
1989, 883. (b) Haudegond, J. P.; Chauvin, Y.; Commereuc, D. J. Org.
Chem. 1979, 44, 3063. (c) Atkins, K. E.; Walker, W. E.; Manyik, R. M.
Tetrahedron Lett. 1970, 3821. (d) van der Drift, R. C.; Vailati, M.;
Bouwman, E.; Drent, E. J. Mol. Catal. A 2000, 159, 163. (e) Bricout, H.;
Carpentier, J. F.; Mortreux, A. J. Mol. Catal. A 1998, 136, 243. (f)
Sakakibara, M.; Ogawa, A. Tetrahedron Lett. 1994, 35, 8013. (g) Saburi,
H.; Tanaka, S.; Kitamura, M. Angew. Chem., Int. Ed. 2005, 44, 1730. (h)
Onodera, G.; Imajima, H.; Yamanashi, M.; Nishibayashi, Y.; Hidai, M.;
Uemura, S. Organometallics 2004, 23, 5841. (i) Kayaki, Y.; Koda, T.;
Ikariya, T. J. Org. Chem. 2004, 69, 2595. (j) Dubs, C.; Yamamoto, T.;
Inagaki, A.; Akita, M. Chem. Commun. 2006, 1962.
(4) (a) Chuit, C.; Felkin, H.; Frajerma, C; Roussi, G.; Swiercze, G. Chem.
Commun. 1968, 1604. (b) Stary, I.; Stara, I. G.; Kocovsky, P. Tetrahedron
Lett. 1993, 34, 179. (c) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647. (d)
Yang, S. C.; Hung, C. W. J. Org. Chem. 1999, 64, 5000. (e) Masuyama,
Y.; Kagawa, M.; Kurusu, Y. Chem. Lett. 1995, 1121. (f) Itoh, K.;
Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 1
1992, 2833. (g) Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5, 3241. (h)
Lu, X. Y.; Lu, L.; Sun, J. H. J. Mol. Catal. 1987, 41, 245.
(5) Yang, S. C.; Hung, C. W. Synthesis 1999, 1747.
(6) (a) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1996,
69, 1065. (b) Patil, N. T.; Yamamoto, Y. Tetrahedron Lett. 2004, 45,
3101.
(7) (a) Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron
1986, 42, 2043. (b) Consiglio, G.; Morandini, F.; Piccolo, O. HelV. Chim.
Acta 1980, 63, 987. (d) Chung, K. G.; Miyake, Y.; Uemura, S. J. Chem.
Soc., Perkin Trans. 1 2000, 15. (d) Nomura, N.; RajanBabu, T. V.
Tetrahedron Lett. 1997, 38, 1713.
(8) (a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314. (b)
Chung, K. G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1
2000, 2725.
(9) Garcia-Yebra, C.; Janssen, J. P.; Rominger, F.; Helmchen, G. Organo-
metallics 2004, 23, 5459.
Table 3. Ir-Catalyzed Asymmetric Allylic Substitutions of 1 with 2
in the Presence Catalytic BPh3
a
yieldb
(%)
ee
(%)
entry
1, R1
)
2, R2
)
3/4c
1
2
3
4
5
6
7
8
9
Ph
Ph
Ph
Ph
p-MeC6H4
p-MeOC6H4
o-MeOC6H4
p-ClC6H4
p-MeC6H4
m-MeOC6H4
p-ClC6H4
74
72
52d
53
72
61
66
66d
61
97/3
88
93
94
92
92
83
93
94
87
94/6
95/5
>94/<6
p-MeOC6H4
p-MeOC6H4
p-MeOC6H4
p-MeC6H4
p-BrC6H4
96/4
>97/<3
95/5
p-MeC6H4
p-MeC6H4
>95/<5
>92/<8
a The reaction was performed by using 1 (1.5 mmol) and 2 (1.0 mmol)
in dioxane (2.0 mL) at 50 °C for 24 h in the presence of a chiral Ir complex
(5 mol %) prepared from [Ir(COD)Cl]2 (0.025 mmol) and 5a (0.050 mmol),
BPh3 (0.08 mmol), and 4 Å MS (300 mg) unless otherwise noted. b Isolated
yield of branched product 3. c Ratio of 3 and 4 was determined by GC
analysis of the crude reaction mixture. d The reaction was conducted for
40 h.
activator in dioxane solvent containing 4 Å molecular sieves
(Scheme 1, “activator” ) BPh3) formed branched allylic alcohols
in moderate to excellent yields with excellent regioselectivities and
enantioselectivities.
(10) (a) Pavlov, V. A.; Zhorov, E. Y.; Voloboev, A. A.; Klabunovskii, E. I. J.
Mol. Catal. 1990, 59, 119. (b) Cherest, M.; Felkin, H.; Umpleby, J. D.;
Davies, S. G. J. Chem. Soc., Chem. Commun. 1981, 681.
(11) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2007, 46, 3139.
(12) (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164. (b)
Kiener, C. A.; Shu, C. T.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 14272.
(13) Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am. Chem. Soc.
2005, 127, 15506.
(14) Shu, C. T.; Leitner, A.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43,
4797.
The scope of the reactions containing catalytic amounts of BPh3
is summarized in Table 3. The reactions of substituted cinnamyl
alcohols with various anilines proceeded in moderate to good yield
with excellent regioselectivities and good to excellent enantio-
selectivities in the presence of the catalyst generated from [Ir(COD)-
Cl]2 and ligand 5a developed in our laboratory for iridium-catalyzed
allylic substitution.13 Reactions conducted with the more common
phosphoramidite ligand 5b16 occurred with much lower conversions.
The reactions occurred in acceptable yields with the parent cinnamyl
alcohol (entries 1-4), and the highest yields were observed from
(15) Kobayashi, S.; Arai, K.; Shimizu, H.; Ihori, Y.; Ishitani, H.; Yamashita,
Y. Angew. Chem., Int. Ed. 2005, 44, 761.
(16) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
JA0730718
9
J. AM. CHEM. SOC. VOL. 129, NO. 24, 2007 7509