of the solvent at room temperature in air. Dark-green crystals of
[Cu2(5-bpyT)2Br4](CH3CN)2 (7) were collected by filtration after
two days and characterized by X-ray diffraction. Yield: 12 mg
(27%, based on the ligand). Anal. Calcd for C78H88Br4Cu2N18O4
(%): C, 52.39; H, 4.96; N, 14.10. Found: C, 52.05; H, 4.91; N,
13.98. MS-EI+ (m/z) [7 - Br]+ 772.60 (calcd 773.18 (100.0%)). See
ESI for mass spectrum (Figure S6).
5 J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 4th edn, John Wiley & Sons, New York, 1992.
6 D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277–7287.
7 A. J. Mancuso and D. Swern, Synthesis, 1981, 165–185.
8 K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 1963, 85, 3027–
3027.
9 K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 1965, 87, 5661–
5670.
10 R. A. Sheldon, I. W. C. E. Arends, G. J. Ten Brink and A. Dijksman,
Acc. Chem. Res., 2002, 35, 774–781.
11 W. Adam, C. R. Saha-Moller and P. A. Ganeshpure, Chem. Rev., 2001,
101, 3499–3548.
Cu(6-bpyT)Br2 (8)
12 P. L. Anelli, C. Biffi, F. Montanari and S. Quici, J. Org. Chem., 1987,
52, 2559–2562.
A solution of CuBr2 (16.8 mg, 0.075 mmol) in 4 mL of acetonitrile
was added to a stirred solution of 6-bpyT (31 mg, 0.05 mmol). The
solution immediately turned dark-red. After 10 min of stirring,
the reaction mixture was filtered and the resulting dark-red filtrate
was left unperturbed for the slow evaporation of the solvent at
room temperature in air. Dark-red crystals of 8 were collected by
filtration after two days and characterized by X-ray diffraction.
Yield: 16 mg (38%, based on the ligand). Anal. Calcd for the
monomer C36H39Br2CuN8O2 (%): C, 51.53; H, 4.68; N, 13.35.
Found: C, 51.42; H, 4.45; N, 13.27. MS-EI+ (m/z) [8 - Br]+ 758.58
(calcd 759.17 (100.0%)). See ESI for mass spectrum (Figure S7).
13 P. J. Figiel, M. Leskela and T. Repo, Adv. Synth. Catal., 2007, 349,
1173–1179.
14 R. A. Sheldon and I. W. C. E. Arends, J. Mol. Catal. A: Chem., 2006,
251, 200–214.
15 P. Gamez, I. W. C. E. Arends, J. Reedijk and R. A. Sheldon, Chem.
Commun., 2003, 2414–2415.
16 P. Gamez, I. Arends, R. A. Sheldon and J. Reedijk, Adv. Synth. Catal.,
2004, 346, 805–811.
17 R. H. Liu, X. M. Liang, C. Y. Dong and X. Q. Hu, J. Am. Chem. Soc.,
2004, 126, 4112–4113.
18 F. Minisci, C. Punta and F. Recupero, J. Mol. Catal. A: Chem., 2006,
251, 129–149.
19 I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown and C. J. Urch,
Science, 1996, 274, 2044–2046.
20 T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi and Y. Ishii, J. Org.
Chem., 2000, 65, 6502–6507.
Description of a typical catalytic experiment
The oxidation reactions were carried out in air in a 10 mL round-
bottom flask equipped with a magnetic stirrer. Typically, the
alcohol (2.0 mmol) was dissolved in 3 mL of a CH3CN/H2O (2:1)
solvent mixture. 11.2 mg (0.1 mmol) of tert-BuOK were added,
followed by 22.3 mg (0.1 mmol) of CuBr2, resulting in a blue-
green suspension. The ligand (60.4 mg, 0.1 mmol) was added and
the reaction suspension slowly turned dark-green. Samples of the
reaction mixture were taken out regularly to monitor the reaction
by GC.
The products of the reaction were determined by comparison
with the commercially available carbonyl compounds. The yields
of aldehydes or ketones were estimated by GC analyses with a
Hewlett-Packard 5890 Series GC equipped with a CP-Sil-5 CB
WCOT Fused Silica capillary column (50 m ¥ 0.25) using dodecane
as external standard (the samples were diluted in a diethyl ether
solution of dodecane).
21 S. R. Reddy, S. Das and T. Punniyamurthy, Tetrahedron Lett., 2004, 45,
3561–3564.
22 K. P. Peterson and R. C. Larock, J. Org. Chem., 1998, 63, 3185–3189.
23 D. R. Jensen, J. S. Pugsley and M. S. Sigman, J. Am. Chem. Soc., 2001,
123, 7475–7476.
24 S. S. Stahl, Science, 2005, 309, 1824–1826.
25 H. Shimizu, S. Onitsuka, H. Egami and T. Katsuki, J. Am. Chem. Soc.,
2005, 127, 5396–5413.
26 S. Velusamy, M. Ahamed and T. Punniyamurthy, Org. Lett., 2004, 6,
4821–4824.
27 N. Jiang and A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087–7090.
28 Y. Kashiwagi, H. Ikezoe and T. Ono, Synlett., 2006, 69–72.
29 C. Bolm and T. Fey, Chem. Commun., 1999, 1795–1796.
30 A. E. Dijksman, I. W. C. E. Arends and R. A. Sheldon, Chem. Commun.,
2000, 271–272.
31 G. Pozzi, M. Cavazzini, S. Quici, M. Benaglia and Dell’G. Anna, Org.
Lett., 2004, 6, 441–443.
32 N. Jiang and A. J. Ragauskas, Tetrahedron Lett., 2005, 46, 3323–
3326.
33 N. Jiang and A. J. Ragauskas, Org. Lett., 2005, 7, 3689–3692.
34 A. P. Dobbs, M. J. Penny and P. Jones, Tetrahedron Lett., 2008, 49,
6955–6958.
35 O. Holczknecht, M. Cavazzini, S. Quici, I. Shepperson and G. Pozzi,
Adv. Synth. Catal., 2005, 347, 677–688.
Acknowledgements
36 A. Gheorghe, E. Cuevas-Yanez, J. Horn, W. Bannwarth, B. Narsaiah
and O. Reiser, Synlett., 2006, 2767–2770.
37 I. A. Ansari and R. Gree, Org. Lett., 2002, 4, 1507–1509.
38 N. W. Wang, R. H. Liu, J. P. Chen and X. M. Liang, Chem. Commun.,
2005, 5322–5324.
The authors are grateful for support from the Graduate Research
School Combination “Catalysis”, a joint activity of the graduate
research schools NIOK, HRSMC, and PTN, and the COST
program Action D35/0011. Coordination of some of our research
by the FP6 Network of Excellence “Magmanet” (contract number
515767) is also kindly acknowledged. The Advanced Light Source
is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02–05CH11231.
39 G. J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Adv. Synth.
Catal., 2002, 344, 355–369.
40 S. Striegler, Tetrahedron, 2006, 62, 9109–9114.
41 J. S. Uber, Y. Vogels, D. van den Helder, I. Mutikainen, U. Turpeinen,
W. T. Fu, O. Roubeau, P. Gamez and J. Reedijk, Eur. J. Inorg. Chem.,
2007, 4197–4206.
42 Z. L. Lu, J. S. Costa, O. Roubeau, I. Mutikainen, U. Turpeinen, S. J.
Teat, P. Gamez and J. Reedijk, Dalton Trans., 2008, 3567–3573.
43 O. Kahn, R. Prins, J. Reedijk and J. S. Thompson, Inorg. Chem., 1987,
26, 3557–3561.
References
44 P. de Hoog, P. Gamez, W. L. Driessen and J. Reedijk, Tetrahedron Lett.,
2002, 43, 6783–6786.
45 R. H. Terbrueggen, T. W. Johann and J. K. Barton, Inorg. Chem., 1998,
37, 6874–6883.
46 T. Garber, S. Vanwallendael, D. P. Rillema, M. Kirk, W. E. Hatfield,
J. H. Welch and P. Singh, Inorg. Chem., 1990, 29, 2863–2868.
1 M. Hudlicky, Oxidation in Organic Chemistry, ACS Monograph Series,
American Chemical Scociety, Washington, DC, 1990.
2 R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidation of Organic
Compounds, Academic Press, New York, 1984.
3 T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037–3058.
4 T. Vogler and A. Studer, Synthesis, 2008, 1979–1993.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 3559–3570 | 3569
©