P. Zhang et al. / Tetrahedron: Asymmetry 20 (2009) 305–312
311
5. (a) Cedilote, M.; Cleary, T.; Iding, H.; Zhang, P. U.S. Pat. Appl. Publ. US
2008145901 A1, 2008.; (b) Cedilote, M.; Cleary, T.; Zhang, P. U.S. Pat. Appl. Publ.
US 2008177079 A1, 2008.
6. For example: (a) Bernrdi, A.; Beretta, M. G.; Colombo, L.; Gennari, C.; Poli, G.;
Scolastico, C. J. Org. Chem. 1985, 50, 4442–4447; (b) Kita, Y.; Yasuda, H.;
Tamura, O.; Itoh, F.; Ke, Y. Y.; Tamura, Y. Tetrahedron Lett. 1985, 26, 5777–5780;
(c) Danilova, G. A.; Melnikova, V. I.; Pivnitsky, K. K. Tetrahedron Lett. 1986, 27,
2489–2490; (d) Kita, Y.; Tamura, O.; Itoh, F.; Yasuda, H.; Kishino, H.; Ke, Y. Y.;
Tamura, Y. J. Org. Chem. 1988, 53, 554–561.
7. Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pirrung, M. C.; White, C. T.;
Vanderveer, D. J. Org. Chem. 1980, 45, 3846–3856.
8. (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199–2204; (b)
Anh, N. T.; Eisentein, O. Nov. J. Chim. 1977, 1, 61.
por to almost dryness. The resulting solid was partitioned between
water (50 mL) and dichloromethane (250 mL). The organic solution
was washed with water (10 mL), dried over MgSO4, filtered, and
concentrated to give the crude product (1.4 g), which was a mix-
ture of 3 (28%), 11 (70%), and 12/13 (2%). Column chromatography
(silica gel, eluting with hexanes/MTBE, 2:1) of the crude product
afforded pure 11 (470 mg) as a colorless oil: ½a D25
¼ þ11:0 (c 1.0,
ꢃ
CH2Cl2); FTIR mmax (neat, cmꢀ1): 3462 (br), 1738; 1H NMR
(500 MHz, CDCl3): d 4.34–4.20 (m, 3H), 4.13–3.96 (m, 3H), 2.54
(d, J = 6.2 Hz, 1H), 1.62 (t, J = 15 Hz, 3H), 1.41 (s, 3H), 1.37 (s, 3H),
1.33 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3): d 170.48,
170.28, 109.25, 6.94, 95.44, 74.59, 74.35, 74.18, 65.93, 65.89,
61.99, 26.42, 25.50, 19.90, 19.71, 14.08; MS (ESI): m/z 251 ([M+1]+).
9. To simplify this discussion, the term ‘Z’ or ‘E’ describes only the relationship
between the methyl group and metallated oxygen, and the influence of the
heavier fluorine and sulfur atoms on the nomenclature is ignored.
10. Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103,
3099–3111.
11. For examples: (a) Nagase, R.; Matsumoto, N.; Hosomi, K.; Hidashi, T.;
Funakoshi, S.; Misaki, T.; Tanabe, Y. Org. Biomol. Chem. 2007, 5, 151–159; (b)
Tanabe, Y.; Matsumoto, N.; Funakoshi, S.; Manta, N. Synlett 2001, 1959–1961;
(c) Eames, J.; de las Heras, M. A.; Jones, R. V. H.; Warren, S. Tetrahedron Lett.
1996, 37, 4581–4584; (d) Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.;
Consolandi, E. Tetrahedron 1991, 47, 7897–7910; (e) Corey, E. J.; Kim, S. S. J. Am.
Chem. Soc. 1990, 112, 4976–4977; (f) Christlieb, M.; Davies, J. E.; Eames, J.;
Hooley, R.; Warren, S. J. Chem. Soc., Perkin Trans. 1 2001, 2983–2996; (g)
Danheiser, R. L.; Nowick, J. S. J. Org. Chem. 1991, 56, 1176–1185; (h) Corey, E. J.;
Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493–5495;
(i) Patel, D. V.; VanMiddlesworth, F.; Donaubauer, J.; Gannett, P.; Sih, C. J. J. Am.
Chem. Soc. 1986, 108, 4603–4604.
12. Tnoue, T.; Liu, J. F.; Buske, D. C.; Abiko, A. J. Org. Chem. 2002, 67, 5250–5256.
13. (a) Shaw, S. J.; Ashley, G. W.; Burlingame, M. A. PCT Int. Appl. WO 070536 A2,
2007.; (b) Ashley, G. W.; Burlingame, M.; Desai, R.; Fu, H.; Leaf, T.; Licari, P. J.;
Tran, C.; Abbanat, D.; Bush, K.; Macielag, M. J. Antibiot. 2006, 59, 392–401; (c)
Burlingame, M. A.; Mendoza, E.; Ashley, G. W. Tetrahedron Lett. 2004, 45, 2961–
2964; (d) Santi, D. V.; Ashley, G.; Myles, D. C. WO 012534 A2, 2002.; (e) Ashley,
G.; Chan-Kai, I.; Burlingame, M. A. WO 044717 A2, 2000.
4.7. Preparation of (2S)-3,5-di-O-benzoyl-2-fluoro-2-C-methyl-
D
-ribono-c-lactone 14
Approximately, two-thirds (700 g) of the aqueous mother liquor
from experiment 4.2 was acidified to pH < 1 with 31% hydrochloric
acid. The mixture was stirred at 90 °C for 3 h, and was then concen-
trated to dryness on a rotavapor. The residual solid was mixed with
toluene (500 mL), and the mixture was concentrated to dryness.
This operation was repeated with toluene (300 mL) and acetoni-
trile (400 mL). The resulting solid was mixed with acetonitrile
(150 mL). To the stirring mixture were added 4-dimethylamino-
pyridine (50 mg) and benzoyl chloride (21 g). The mixture was
cooled to 10 °C, and triethylamine (21 g) was added while main-
taining the batch temperature below 40 °C. After the addition,
the mixture was stirred at 45 °C for 30 min and cooled to room
temperature. The mixture was filtered, and the wet cake was
washed with acetonitrile. The filtrate was concentrated to dryness
to give an oil. The crude oil was mixed with ethyl acetate
(ꢁ200 mL) and washed with 10% Na2CO3 solution, brine, dried over
MgSO4, filtered, and concentrated to give crude product (ꢁ15 g) as
a thick oil. The crude product was purified with flash column chro-
matography (eluting with dichloromethane), followed by a recrys-
tallization from 2-propanol (50 mL) and drying under vacuum at
45 °C overnight to give pure 14 (4.8 g) as a white solid: mp 95.2–
14. (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2123–2129;
(b) Evans, D. A.; Bartoli, J. Tetrahedron Lett. 1982, 23, 807–810.
15. Ishihara, T.; Ichihara, K.; Yamanaka, H. Tetrahedron 1996, 52, 255–262.
16. Prepared following literature procedure (Andrade, C. K. Z.; Rocha, R. O.;
Vercillo, O. E.; Silva, W. A.; Matos, R. A. F. Synlett 2003, 2351–2352): 74% yield
as white solid: mp 139.5–140.1 °C; FTIR
m
max (neat, cmꢀ1): 1797, 1732; 1H NMR
(500 MHz, CDCl3): d 8.12–8.05 (m, 1H), 7.34–7.27 (m, 2H), 7.27–7.21 (m, 1H),
6.09 (dq, J = 6.6, 48.4 Hz, 1H), 1.72 (dt, J = 12.3, 24.7 Hz, 3H); 13C NMR
(125 MHz, CDCl3): d 169.6, 169.4, 150.6, 142.8, 127.2, 125.9, 125.2, 116.0,
110.2, 86.7, 85.2, 18.1, 17.9.
17. Ishihara, T.; Ichihara, K.; Yamanaka, H. Tetrahedron Lett. 1995, 36, 8267–8270.
18. Prepared following the literature procedure in Ref. 11
19. Prepared following the literature procedure in Ref. 12c.
99.4 °C; ½a 2D5
ꢃ
¼ þ23:6 (c 1.0, CH2Cl2); FTIR mmax (neat, cmꢀ1):
20. Prepared following the literature procedure in Ref. 9
21. One possible cause for the low observed stereoselectivity in these reactions
could be the formation of higher percentage of E-enolate favored by fluorine–
metal interactions. Although fluorine-metal interactions were detected under
certain circumstances (e.g., Takemura, H.; Kon, N.; Kotoku, M.; Nakashima, S.;
Otsuka, K.; Yasutake, M.; Shimyozu, T.; Inazu, T. J. Org. Chem. 2001, 66, 2778;
Barr, D.; Hutton, K. B.; Morris, J. H.; Mulvey, R. E.; Reed, D.; Snaith, R. J. Chem.
Soc., Chem. Commun. 1986, 127; Plenio, H. ChemBioChem 2004, 5, 650; and the
references cited in these papers), no strong evidence for the existence of such
1802, 1735, 1712; 1H NMR (500 MHz, CDCl3): d 8.03 (dd, J = 1.2,
8.3 Hz, 2H), 7.67–7.61 (m, 1H), 7.59–7.53 (m, 1H), 7.51–7.45 (m,
2H), 7.45–7.40 (m, 2H), 5.89–5.79 (m, 1H), 4.79–4.69 (m, 2H),
4.69–4.59 (m, 1H), 1.77 (d, J = 20 Hz, 3H); 13C NMR (125 MHz,
CDCl3): d 170.36, 170.16, 165.85, 164.86, 134.25, 133.49, 129.90,
129.82, 129.75, 129.73, 129.04, 128.80, 128.50, 128.47, 128.05,
94.43, 92.93, 78.53, 78.49, 74.62, 74.38, 62.96, 16.93, 16.73; MS
(ESI): m/z 373 ([M+1]+).
interactions in
a-fluoroenolates were reported in the literature. Some
literature results might have indicated the lack of such interaction or the
lack of influence of such an interaction on the E/Z ratio of enolates. For instance,
19F NMR of the enolates of N,N-dimethylfluoroacetamide indicated an almost
1:1 mixture of E/Z isomers even at ꢀ85 °C (Welch, J. T.; Eswarakrishnan, S. J.
Org. Chem. 1985, 50, 5403). Another example is that enolates 23 and 24 existed
almost exclusively as Z-enolates under the reaction conditions (Refs. 15 and
17), indicating that the coordination between F–Li or F–Ti (if it exists) has little
effect on the E/Z ratio.
Acknowledgments
We thank Drs. Geng-Xian Zhao, Stephen Chan, Shan-Ming
Kuang, Ms. Joni Bishop, Ms. Eileen Zhao, Mr. James Suchy, and
Ms. Joye Collins for their analytical supports. We also thank Dr. Jo-
die Brice for her help in preparation of the manuscript.
22. Schmid, C. R.; Bradley, D. A. Synthesis 1992, 587–590.
23. Compound 31 was prepared according to the scheme below:
O
O
O
O
OH
S
S
O
O
O
O
cat.MeSO3H
References
O
O
36
37
1. (a) Clark, J. PCT Int. Appl. WO 2005003147 A2, 2005.; (b) Clark, J. L.; Hollecker,
L.; Mason, J. C.; Stuyver, L. J.; Tharnish, P. M.; Lostia, S.; McBrayer, T. R.;
Schinazi, R. F.; Watanabe, K. A.; Otto, M. J.; Furman, P. A.; Stec, W. J.; Patterson,
S. E.; Pankiewicz, K. W. J. Med. Chem. 2005, 48, 5504–5508.
2. (a) Wang, P.; Stec, W.; Clark, J.; Chun, B.; Shi, J.; Du, J. PCT Int. Appl. WO
2006012440 A2, 2006.; (b) Chun, B.; Wang, P. PCT Int. Appl. WO 2006031725
A2, 2006.
3. Ref. 2a,b Mayes, B. A.; Moussa, A. PCT Int. Appl. WO 2007075876 A2, 2007.
4. Axt, S. D.; Sarma, K.; Vitale, J.; Zhu, J.; Ross, B.; Rachakonda, S.; Jin, Q.; Chun, B.
PCT Int. Appl. WO 2008045419 A1, 2008.
F
KF
O
O
HCONH2
31
To a solution of methanesulfonyl ethyl lactate 36 (purchased from Acros, 60 g,
306 mMol) in n-butanol (100 mL) was added methanesulfonic acid (1.4 g,
14.6 mMol). The mixture was gradually heated to ꢁ120 °C, and the low boiling
point components were distilled out. The distillation was continued until batch
temperature reached ꢁ136 °C. More n-butanol (30 mL) was added, and the