1384
B.M. Boardman et al. / Journal of Organometallic Chemistry 694 (2009) 1380–1384
of Ni(PMe3)(g
3-CH2Ph)Cl (43.0 mg, 0.164 mmol) and was allowed
References
to stir at room temperature for 12 h. The reaction mixture was fil-
tered over celite and excess solvent was removed under vacuum to
give a red solid. Trituration with pentane and crystallization at
À35 °C overnight gave the desired product as a dark orange solid
in 82% yield.
[1] (a) B. Rieger, L. Baugh, S. Striegler, S. Kacker, Late Transition Metal
Polymerization Catalysis, John Wiley & Sons, New York, 2003;
(b) R. Blom, A. Follestad, E. Rytter, M. Tilset, M. Ystenes, Organometallic
Catalysts and Olefin Polymerization: Catalysts for a New Millennium, Springer-
Verlag, Berlin, Germany, 2001;
(c) P. Galli, G. Vecellio, J. Polym. Sci. A: Polym. Chem. 42 (2004) 396–415;
(d) W. Keim, F.H. Kowalt, R. Goddard, C. Kruger, Angew. Chem. Int. Ed. 17
(1978) 466;
1H NMR (399.95 MHz, [d6]-benzene, 298 K): d = 7.39 (broad s,
3H, phenyl), 7.20-7.02 (m, 5H, benzyl), 3.23 (sept, 2H, J = 6.8 Hz,
iPr–CH), 1.75 (s, 3H, CH3), 1.73 (s, 6H, 2CH3), 1.34 (d, 6H,
J = 6.8 Hz, iPr–CH3), 1.28 (s, 2H,CH2-benzyl) 1.21 (d, 6H, J = 7 Hz,
iPr–CH3) 0.77 (d, 9H, J = 8.2 Hz, P(CH3)3). 13C NMR (100 MHz,
C6D6, 298 K): d = 176.41(CO), 148.03 (imine), 137.06, 130.34,
129.63, 124.58, 124.05, 123.91 (phenyl/benzyl-C), 53.07 (C-
(CH3)2, 28.81(CH2), 27.34 (CH2-benzyl), 25.66 (iPr–CH), 23.95
(CH3C@N), 23.82 (C(CH3)2 23.53 (iPr–CH3), 23.31 (iPr–CH3), 13.95
(2P(CH3)3). 31P NMR (162 MHz, C6D6, 25 °C): d = À21.2.
Elemental Anal. Calc.: C 67.99, H 8.66, N 2.73; found C 67.96, H
8.58, N 2.63%.
(e) S.D. Ittel, L.K. Johnson, M. Brookhart, Chem. Rev. 100 (2000) 1169–1203;
(f) V.C. Gibson, S.K. Spitzmesser, Chem. Rev. 103 (2003) 283–315;
(g) L.S. Boffa, B.M. Novak, Chem. Rev. 100 (2000) 1479–1494;
(h) M.J. Yanjarappa, S. Sivaram, Prog. Polym. Sci 27 (2002) 1347–1398;
(i) S. Mecking, A. Held, F.M. Bauers, Angew. Chem. SInt. Ed. 41 (2002) 544–561;
(j) S. Mecking, Coordination Chem. Rev. 203 (2000) 325–351.
[2] (a) L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc. 117 (1995) 6414–
6415;
(b) S. Mecking, L.K. Johnson, L. Wang, M. Brookhart, J. Am. Chem. Soc 120 (1998)
888–899;
(c) P. Kuhn, D. Semeril, D. Matt, M.J. Chetuchi, P. Lutz, Dalton Trans. (2007) 515–
528.
[3] (a) U. Klabunde, S.D. Ittel, J. Mol. Catal. 41 (1987) 123–124;
(b) K.A. Ostoja-Starzewski, J. Witte, K.H. Reichert, G. Vasiliou, In Transition
Metals and Organometallics as Catalysts for Olefin Polymerization, Springer,
Berlin, 1998;
4.6. Polymerization reactions
(c) T.R. Younkin, E.F. Connor, J.I. Henderson, S.K. Friedrich, R.H. Grubbs, D.A.
Bansleben, Science 287 (2000) 460–462;
(d) J.C. Jenkins, M. Brookhart, J. Am. Chem. Soc. 126 (2004) 5827–5842.
[4] (a) J.W. Strauch, G. Erker, G. Kehr, R. Fröhlich, Angew. Chem. Int. Ed. Engl. 41
(2002) 2543–2546;
Polymerizations were conducted in the following manner using
pre-catalysts 1, 2, or 3. An autoclave reactor (100 mL) was loaded
inside a glovebox with pre-catalyst (5
lmol Ni), B(C6F5)3 (5 eq.,
(b) M.C. Bonnet, F. Dahan, A. Ecke, W. Keim, R.P. Schultz, I.J. Tkatchenko, J.
Chem. Soc. Chem. Commun. (1994) 615–616;
25 mol) and toluene, such that the final volume of the toluene
l
solution was 30 mL. The reactor was sealed inside the glovebox.
The reactor was removed from the glovebox and attached to an
ethylene line and the gas was fed continuously into the reactor
at 100 psi. Several polymerization reactions were setup in this
manner. While the ethylene pressure remained constant between
runs, the temperature was varied. Two temperature profiles were
examined at 20 °C and 40 °C. These temperatures were maintained
throughout the reaction using either an ice bath or the heating ele-
ment of the reactor. After a reaction time of 20 min, the ethylene
was vented and acetone was added to quench the polymerization.
The precipitated polymer was collected by filtration and dried
overnight under vacuum. GPC analysis determined the average
molecular weight and PDI’s and DSC determined the melting
temperature.
(c) Z.J.A. Komon, X. Bu, G.C. Bazan, J. Am. Chem. Soc. 122 (2000) 12379–12380;
(d) B.Y. Lee, G.C. Bazan, J. Vela, Z.J.A. Komon, X. Bu, J. Am. Chem. Soc. 123 (2001)
5352–5353;
(e) C.B. Shim, Y.H. Kim, B.Y. Lee, Y. Dong, H. Yun, Organometallics 22 (2003)
4272–4280;
(f) G.J. Pindado, M. Thorton-Pett, M. Bouwkamp, A. Meetsma, B. Hessen, M.
Bochmann, Angew. Chem. Int. Ed. Engl. 36 (1997) 2358;
(g) B. Temme, G. Erker, J. Karl, H. Luftman, R. Frohlich, S. Kotila, Angew. Chem.
Int. Ed. Engl. 34 (1995) 1755–1757;
(h) T.J. Marks, Acc. Chem. Res. 25 (1992) 57–65;
(i) X. Yang, C.L. Stern, T.J. Marks, J. Am Chem. Soc. 116 (1994) 10015–10031.
[5] (a) Z.J.A. Komon, G.M. Diamond, M.K. Leclerc, V. Murphy, M. Okazaki, G.C.
Bazan, J. Am. Chem. Soc. 124 (2002) 15280–15285;
(b) Y. Chen, G. Wu, G.C. Bazan, Angew. Chem. Int. Ed. Engl. 44 (2005) 1108–
1112;
(c) D.J. Parks, W.E. Piers, M. Parvez, R. Atencio, M.J. Zaworotko, Organometallics
17 (1998) 1369–1377.
[6] (a) H.Y. Kwon, S.Y. Lee, B.Y. Lee, D.M. Shin, Y.K. Chung, Dalton Trans. (2004)
921–928;
(b) C.B. Shim, Y.H. Kim, B.Y. Lee, Y.K. Shin, D.M. Chung, J. Organomet. Chem. 675
(2003) 72–76;
Supplementary material
(c) B.M. Boardman, J.M. Valderrama, F. Munoz, G. Wu, G.C. Bazan, R. Rojas,
Organometallics 27 (2008) 1671–1674.
[7] Y. Chen, B.M. Boardman, G. Wu, G.C. Bazan, J. Organomet. Chem. 692 (2007)
4745–4749.
CCDC 680085, 679917, 679916 contain the supplementary crys-
tallographic data for compounds 1, 2, and 3, respectively. These
data can be obtained free of charge from The Cambridge Crystallo-
[8] E. Carmona, M. Paneque, M.L. Poveda, Polyhedron 8 (1989) 285–291.
Acknowledgments
The authors are grateful to the Department of Energy for finan-
cial support of this work (Grant Number: DE-FG03098ER14910)
and projects FONDECYT 11060384.